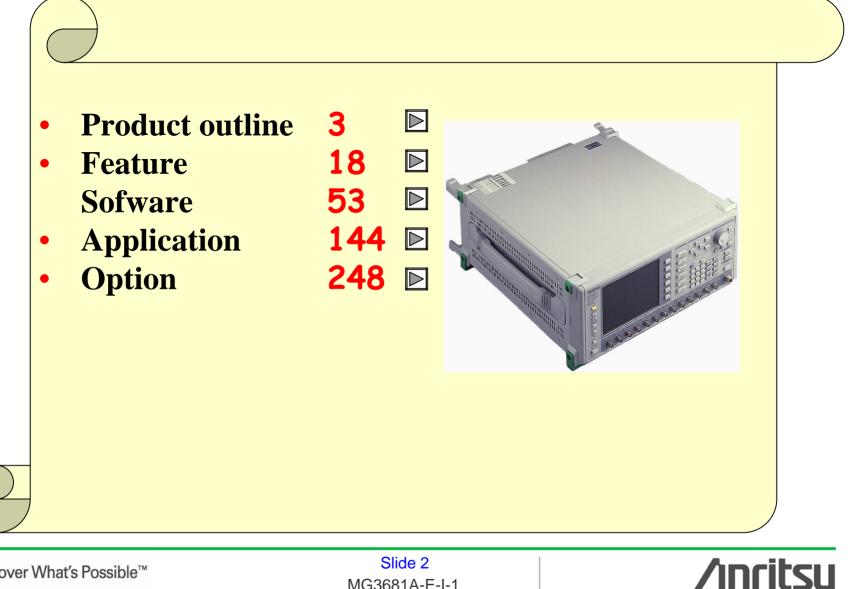
/inritsu

MG3681A Digital Modulation Signal Generator

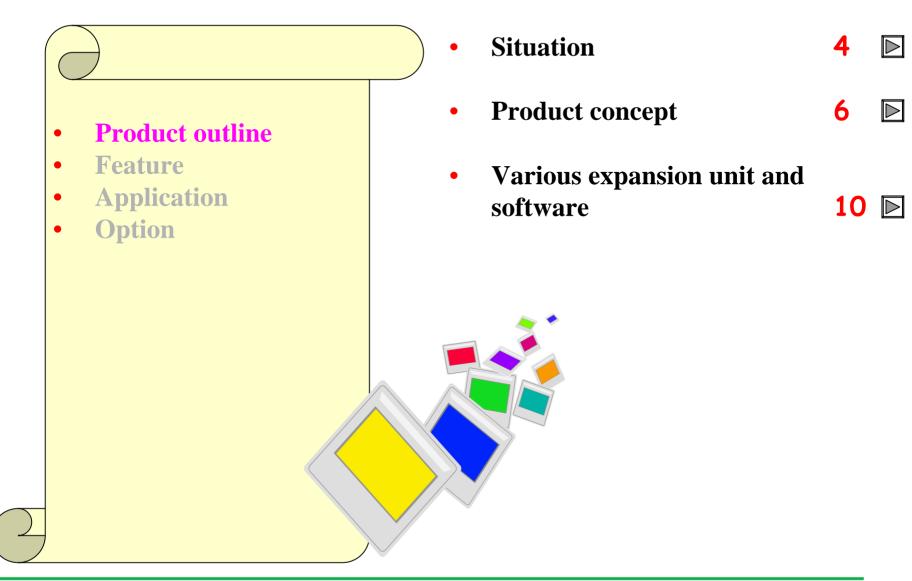
MG3681A Digital Modulation Signal Generator

Product Introduction


5	~						
*	Ancritsu MG3681A Digital Modulation Signal Generator 250kHz-30Hz 3-66Hztr30Hz)00 000 00 MHz) dBm Mem	Channel F1	Function Frequency Level	Cursor Set Cancel	Eot Step
	Contrast Contrast Screen Copy Display OffiOn	System : [U-COTH3] Simulation Link : [Down Link] Filter :: (RWN0] Filter Mode : [EVH1] Haximum Code Number : [1] On. 1 : Con] Power : [-0.0dB] On. 2 : [OFH1] Power : [-40.0dB] On. 3 : [OFH1] Power : [-40.0dB]	SCH Pr : - So : - SCH Pr : - So : -	Channel F3	Digital Mod Analog Mod 7	CE BS B B B C CE BS B C CE BS C C C C C C C C C C C C C C C C C C	Modulation Digital
	Panel Lock Remote	Ch. 6 : [Off] Power : [-48.04B] Ch. 8 : [Off] Power : [-48.04B] Ch.18 : [Off] Power : [-48.04B] Ch.12 : [Off] Power : [-48.04B] Data (CH4) Clock/Trig PkR	Ch. 5 : COF(F) Power : [-48.048] Ch. 7 : EOF(F) Power : [-48.048] Ch. 9 : DOF(F) Power : [-48.048] Ch. 11 : EOF(F) Power : [-48.048] Add Ch. : Off Power : [-48.048] CONT Ref. Clock	etc. 1/0 Input 1/0 Input / Til Output		5 6 (Metz/mW) (ms/V) 2 3 (Ht/mW) (rad/mV) 7	Aralog HF Output RPP Rest Offsor One Output
				Divide AM 0 1 Image: Solid Image: Solid Image: Solid Image: Solid		ò (ò 💮	And Paper Reactions (2) Mary (2)

Anritsu Corporation December 2009 Ver 10.0

Slide 1 MG3681A-E-I-1



Contents

Slide 2 MG3681A-E-I-1

Product outline

Û

Slide 3 MG3681A-E-I-1

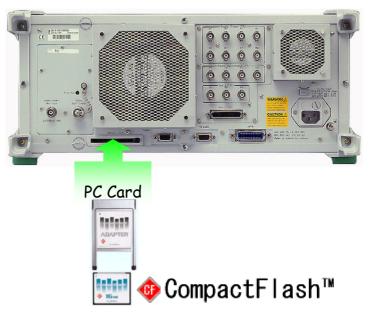
/inritsu

For evaluating Base station, Mobile phone and Components for high-speed and wideband digital mobile communications systems

The digital mobile communications systems are evolved to higher speed and wider band.

» The interference to other systems of adjacent frequency band and the adjacent channel of the same system is minimized, and the modulation type with efficient transmission is adopted, in order to communicate at higher speed in the limited frequency resources.

• This signal generator that performed excellent adjacent channel leakage power ratio, wideband/high-accuracy vector modulation and various basebands is utilizable for the evaluation of high-speed digital mobile communications equipment and components in future.


For evaluating Base station, Mobile phone and Components for high-speed and wideband digital mobile communications systems

- The sensitivity(demodulation) test of base station and mobile phone receivers needs to be evaluated by wanted signal generator. Also, the receiver interference test needs to be evaluated by interference signal generator and wanted signal generator.
- Path characteristics and distortion of the components such as power amplifier, RF module and baseband need to be evaluated by signal generator and signal analyzer.

Almighty support to 3G mobile communications systems (Product concept)

• Excellent expansible platform

- » Various modulation signals and AWGN are outputted by installing required expansion unit for baseband.
- Due to the main logic circuit of expansion unit which consists of reconfigurable FPGA^(Field Programmable Gate Array), users can upgrade easily by downloading the firmware including FPGA circuit data and DSP^(Digital Signal Processor) program in the expansion unit.

Slide 6 MG3681A-E-I-1

Almighty support to 3G mobile communications systems (Product concept)

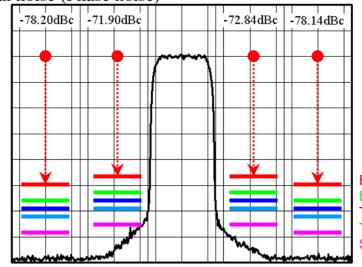
- Successor of MG3670 series Signal Generator for second generation mobile communications systems
 - » 4/5 downsizing
 - » 20% cost down

MG3681A (250k~3GHz)

Digital and Analog modulation 30MHz wideband vector modulation

/Inritsu

Discover What's Possible™


Slide 7 MG3681A-E-I-1

Excellent analog basic performance (Product concept)

• Adjacent Channel Leakage Power Ratio

In W-CDMA system, the adjacent channel leakage power ratio must be minimized in order to reduce the interference to adjacent PHS system. Extremely low adjacent channel leakage power ratio is required especially for TX power amplifier of BTS. The measurement of adjacent channel leakage power ratio of TX power amplifier requires excellent adjacent channel leakage power ratio of signal source.

- -68 dBc/3.84MHz typ. : 5MHz offset
 - Due to Intermodulation distortion
- -75 dBc/3.84MHz typ. : 10MHz offset
 - Due to Residual noise (Phase noise)

BS ACLR minimum requirement BS ACLR manufacture target (e.g. -6 dB) TX amplifier minimum requirement (e.g. -9 dB) TX amplifier manufacture target (e.g. -12 dB) Signal source minimum requirement (e.g. -16 dB)

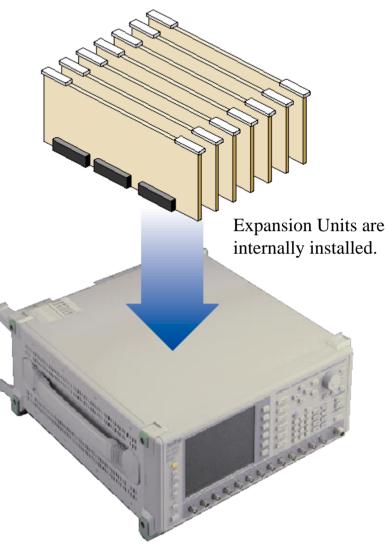
/inritsu

Excellent analog basic performance (Product concept)

• Output level resolution

- 0.01 dB : at all level range

Useful for fine level adjustment in components test and level calibration by power meter.



Various expansion unit The Platform with Excellent Expandability

Expansion Units is installable up to seven slots.

L	1			
Expansion unit	Software			
	MX368011A			
MU368010A	PDC Software			
TDMA Modulation Unit	MX368012A			
	GSM Device Test Software			
	MX368041B			
MU368040A	W-CDMA Software			
CDMA Modulation Unit	MX368042A			
	IS-95 Device Test Software			
	MX368031A			
	Device Test Signal Generation Software			
	MX368033A			
MU368030A	CDMA2000 1xEV-DO Signal Generation Software			
Universal Modulation Unit	MX368034A			
	PDC Packet Software			
	MX368035A			
	PHS Generation Software			
MU368060A				
AWGN Unit				

Slide 10 MG3681A-E-I-1

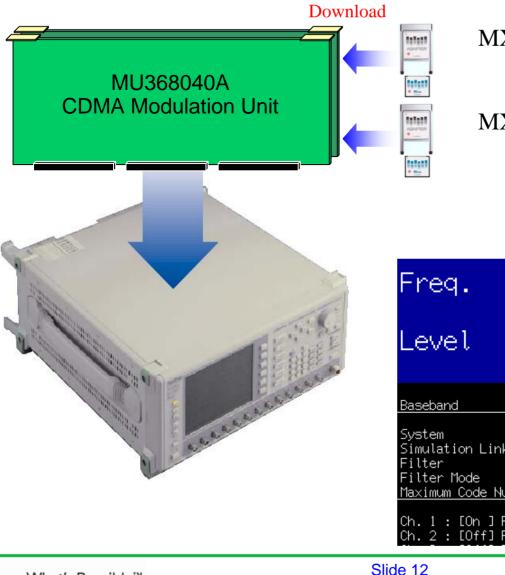
Expansion Unit and Software

Communication system	Software 🚸 CompactFl	ash™	Expansion unit	
W-CDMA / 3GPP(FDD)	MX368041B	telett		
W-CDWA/ SGPP(FDD)	W-CDMA Software	10-		+ 1
cdmaOne	MX368042A	tetett		
cumaOne	IS-95 Device Test Software	4 16m	MU368040A CDMA Modulation Unit	MU368060A AWGN Unit
PDC	MX368011A	telett		
FDC	PDC Software	16-		
GSM	MX368012A	Intest		
	GSM Device Test Software	* 10-s	MU368010A TDMA Modulation Unit	
CDMA2000 1xEV-DO ^{*1} , CDMA2000 1X ^{*2} GSM/EDGE ^{*3} , PDC ^{*3} , PHS ^{*3} , NADC ^{*3}	MX368031A	Section.3		
GSM/EDGE ⁻³ , PDC ⁻³ , PHS ⁻³ , NADC ⁻³	Device Test Signal Generation Software	128-	7	
CDMA2000 1xEV-DO	MX368033A	Sub4.3		
	CDMA2000 1xEV-DO Signal Generation Software	128_		
PDC Packet	MX368034A	IS 2MB	▶ ┕ <u>──</u> ·──┙ ╵	† 7
FDC Fackel	PDC Packet Software	1070()4 (MU368030A Universal Modulation Unit	
PHS	MX368035A	Sedia 3		
FIIO	PHS Signal Generation Software	128_		

*1: Only 16QAM modulation is available in Forward, 8PSK and QPSK modulations are not available. Neither Forward or Reverse is utilizable for receiver sensitivity test as coding format is not performed.

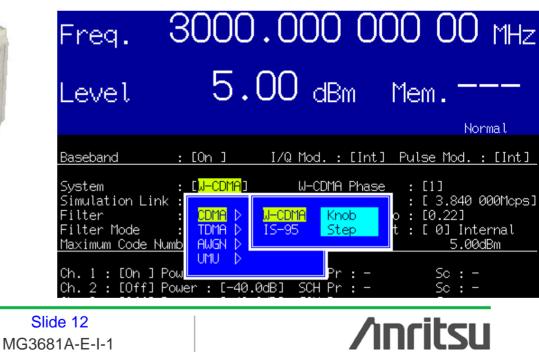
*2: Reverse is utilizable for receiver sensitivity test (RC1 & 3) in BS manufacturing as coding format is performed. Forward is not utilizable for receiver sensitivity test as coding format is not performed.

*3: Continuous modulation signal based on the communication system.

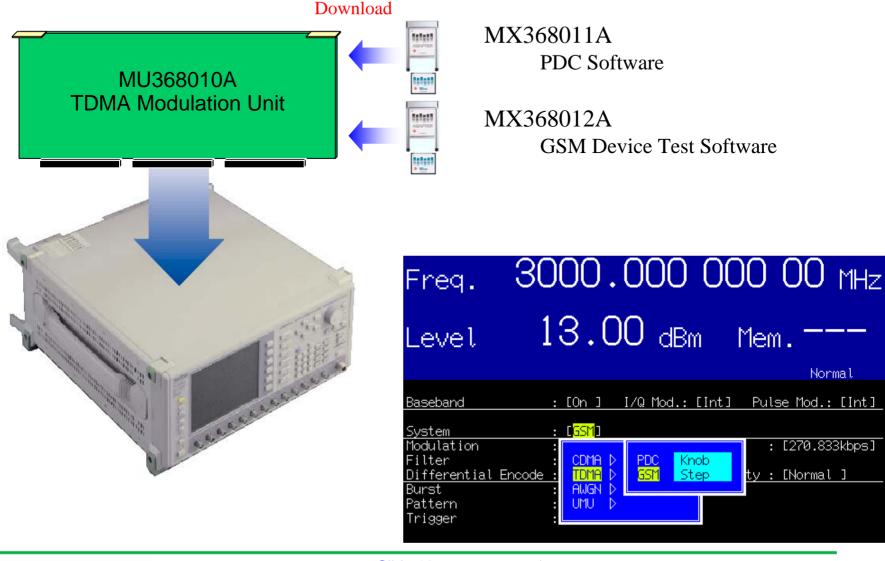

The software is provided pre-installed in the expansion unit. Also, a PC memory card is provided for backup.

The software changes instantly by selecting the installed software.

At the software for the MU368030A, the signal format to output is selectable by downloading signal pattern files included in the software from a PC memory card to the waveform memory of the MU368030A Universal Modulation Unit.


MU368040A CDMA Modulation Unit

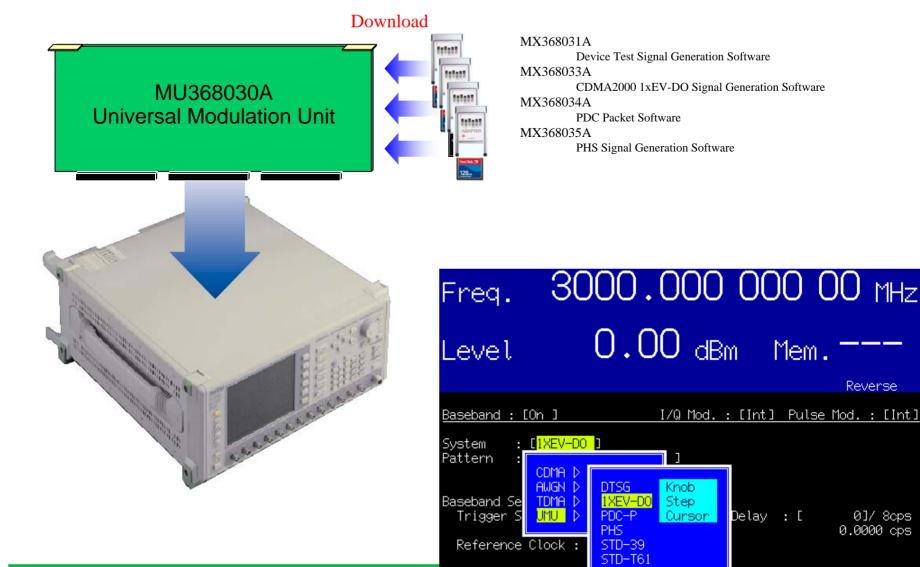
Dual output Baseband generator for Real time output and Waveform memory output



MX368041B W-CDMA Software

MX368042A IS-95 Device Test Software

MU368010A TDMA Modulation Unit Baseband generator for Real time output



/inritsu

Discover What's Possible™

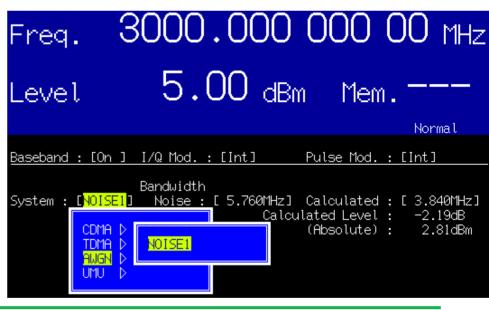
Slide 13 MG3681A-E-I-1

MU368030A Universal Modulation Unit **Baseband generator for Waveform memory output**

Discover What's Possible™

MG3681A-E-I-1

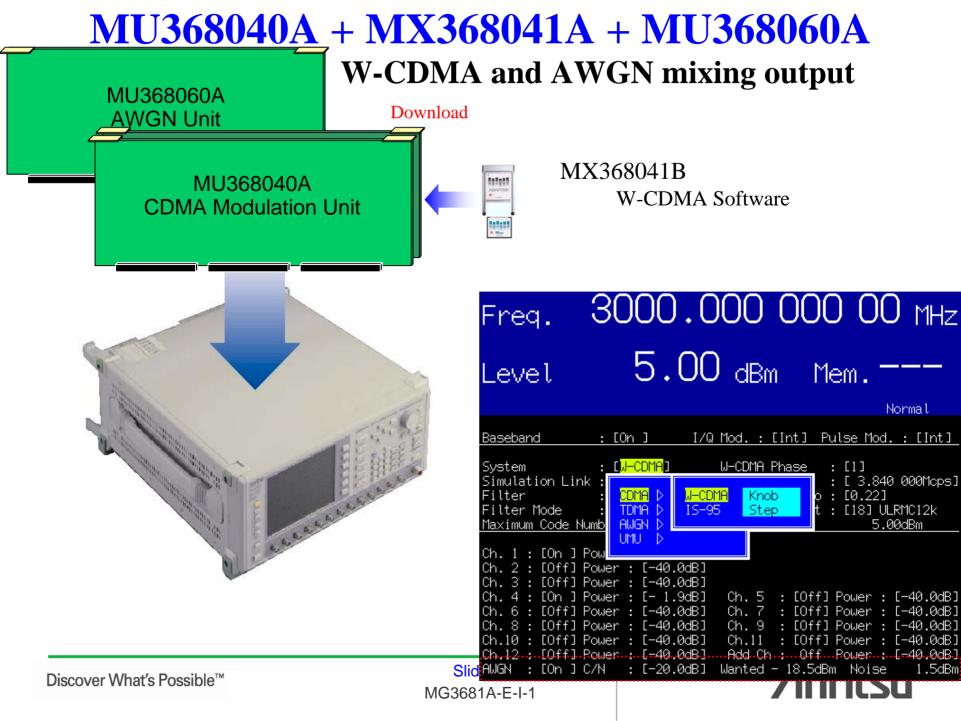
Slid

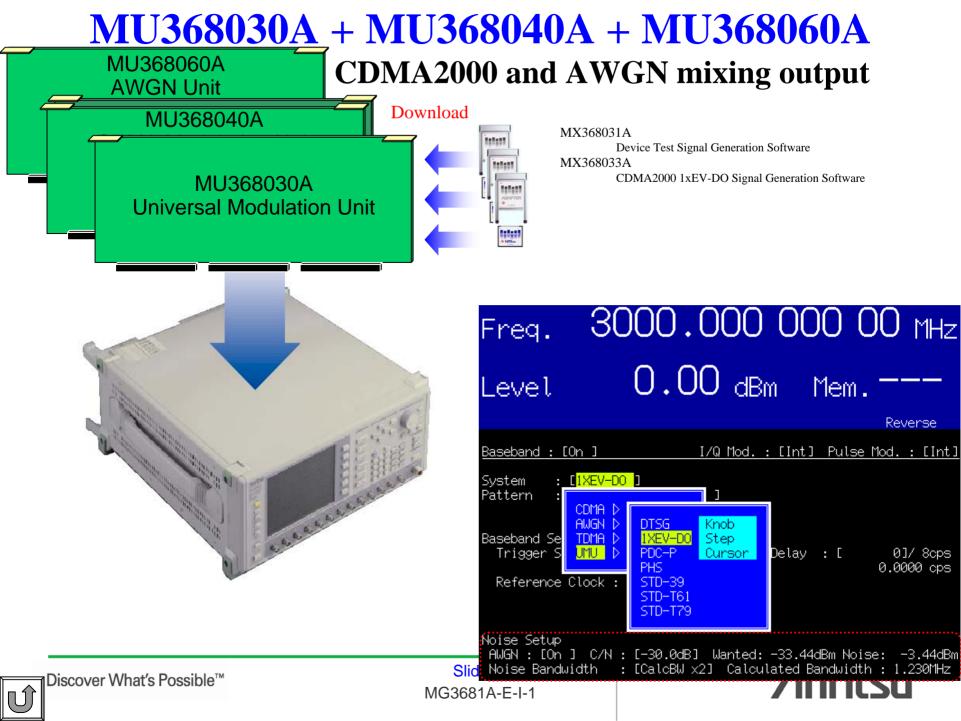

STD-T79

0]/ 8cps 0.0000 cps

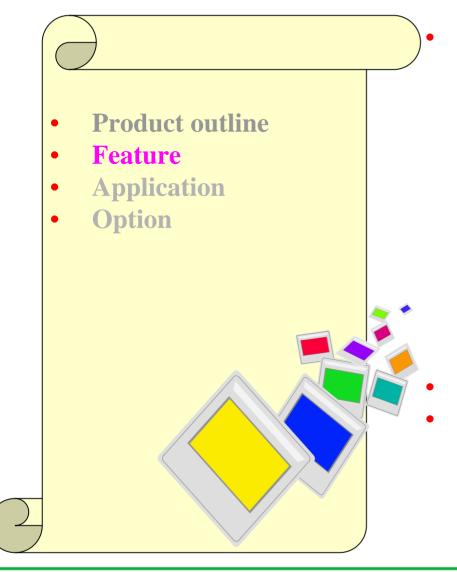
Reverse

MU368060A AWGN Unit AWGN source for Real time output



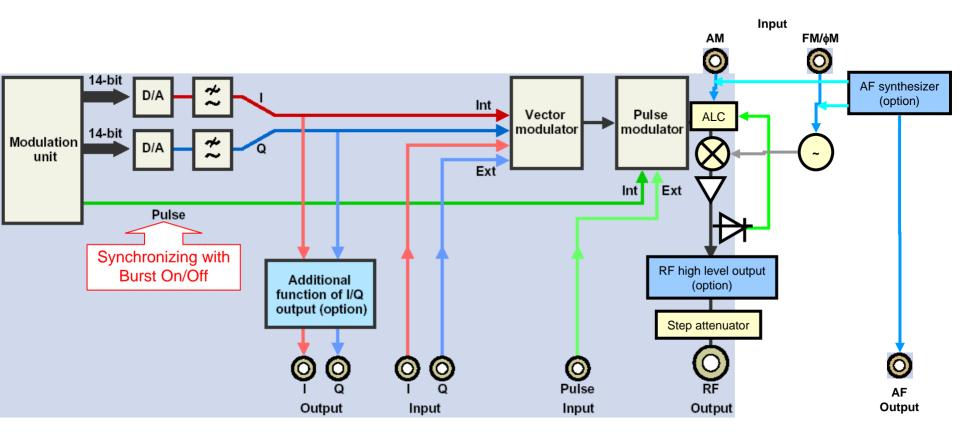


/inritsu


Discover What's Possible™

Slide 15 MG3681A-E-I-1

Feature

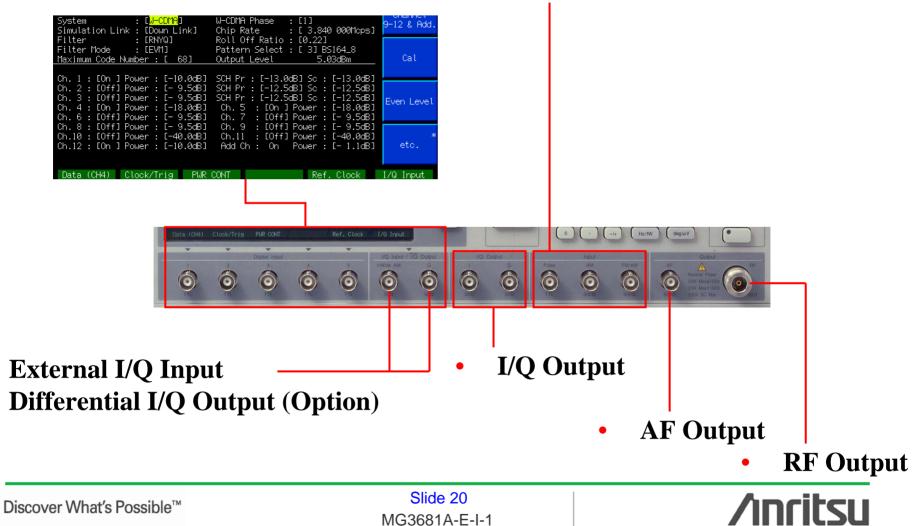

MG3681A

»	Block diagram	19	\triangleright
»	Connectivity	20	\triangleright
»	Excellent level accuracy sign	nal	
		22	\triangleright
»	Excellent signal Purity	28	\triangleright
»	Phase noise	29	\triangleright
»	ACLP	32	\triangleright
»	Wideband and Excellent acc	uracy	
	vector modulation	41	\triangleright
»	Leakage emissions policy	42	\triangleright
»	Operability	43	\triangleright
Expansion unit 47			
Soft	53	\triangleright	

Slide 18 MG3681A-E-I-1

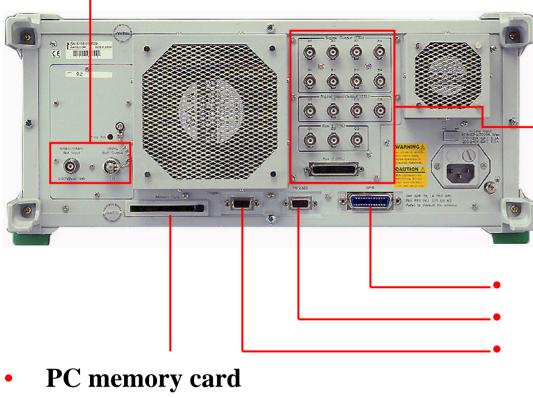
MG3681A Block diagram

Slide 19 MG3681A-E-I-1

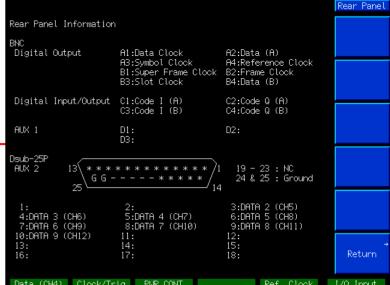

Connectivity Front panel

>>

External modulation Input


Pulse, AM, FM, ϕ M

• Display functions according to the used software and settings


Connectivity Rear panel

- External timebase reference clock
 - » 10MHz/13MHz

» PCMCIA interface

Display functions according to the used software and settings

- GPIB remote control
- **RS-232C** remote control
- **Trigger remote control**
 - Frequency, Output level, Parameter memory (BPM number) Up/Down, RF output On/Off

/inritsu

Slide 21 MG3681A-E-I-1

Excellent level accuracy signal

For outputting with precise level

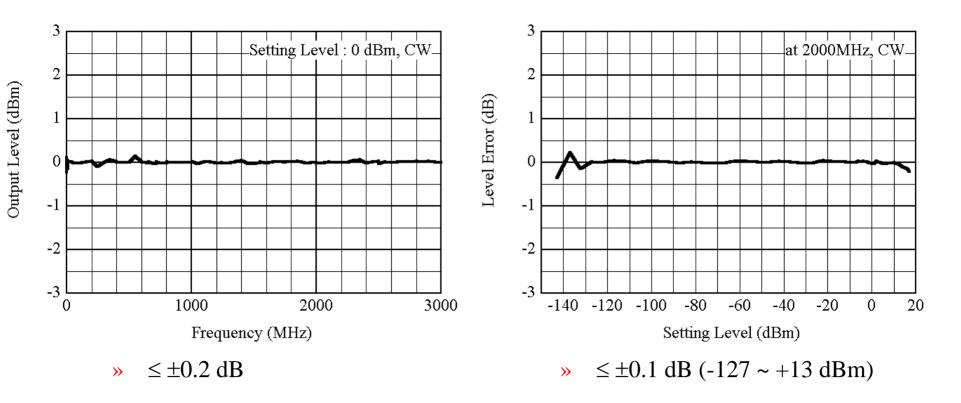
• High-stability ALC^(Automatic Level Control) circuit

Detectable at vector modulation (internal/external modulation) also

The temperature stability of ALC circuit is almost decided by temperature response of detector. The temperature response of detector has been improved by heating the detection diode with heater circuit in low temperature, which is due to the big influence of detection voltage drift especially in low temperature.

High-accuracy and high-reliability step attenuator

- » Mechanical attenuator with excellent attenuation accuracy, small path loss and no signal distortion.
 - 1dB step, up to 140dB attenuation

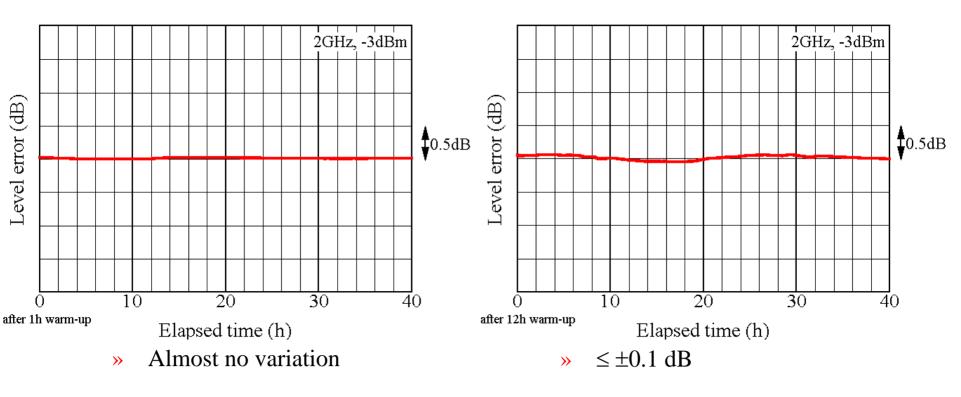

Per-unit correction

> Frequency response, linearity error of ALC circuit and attenuation error of step attenuator are measured by the power meter and calibration receiver, then the data is inputted to correction table.

Typical level accuracy

• Frequency response

Linearity


/Inritsu

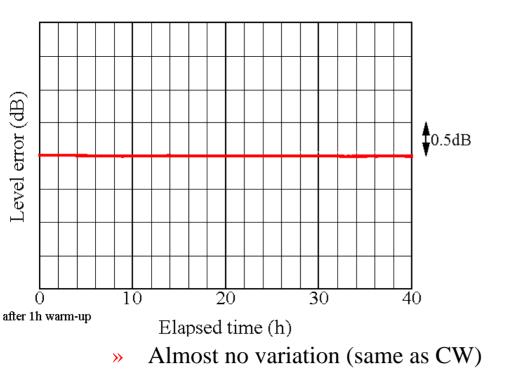
Discover What's Possible™

Slide 23 MG3681A-E-I-1

Typical level stability

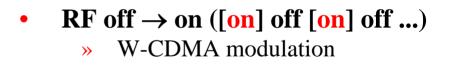
Aging » CW, ALC off

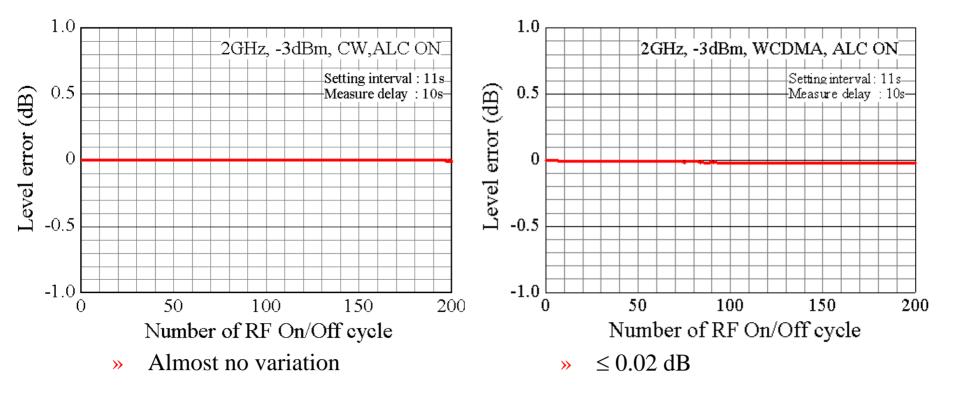
- at ALC off
 - High-speed level switching


/inritsu

Slide 24 MG3681A-E-I-1

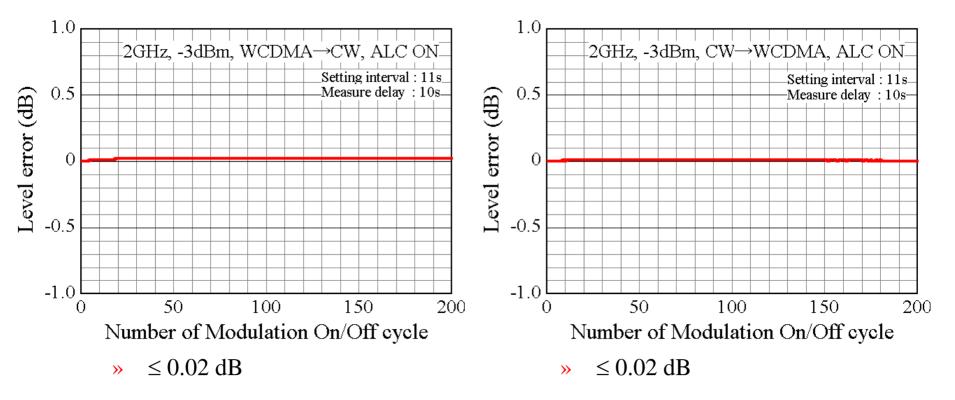
Typical level stability


• Aging


» W-CDMA modulation, ALC on

Typical level repeatability

1st measurement level = reference(0 dB)

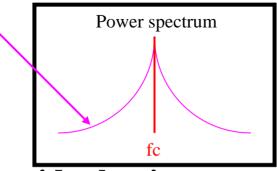

Discover What's Possible™

Slide 26 MG3681A-E-I-1

Typical level repeatability

- Modulation on \rightarrow off ([off^(CW)] on^(W-CDMA) [off] on ...)
- Modulation off \rightarrow on ([on^(W-CDMA)] off^(CW) [on] off ...)

1st measurement level = reference(0 dB)


Slide 27 MG3681A-E-I-1

Excellent signal Purity

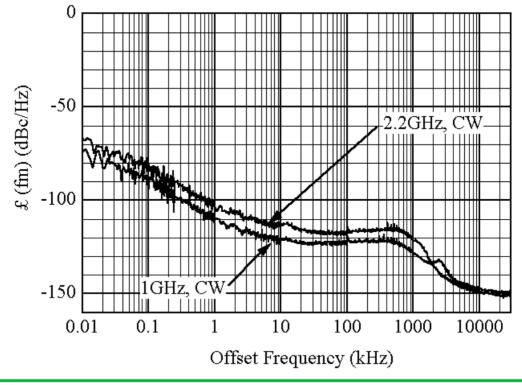
Alternate adjacent channel leakage power ratio is mainly due to phase noise.

» Phase noise [dBc/Hz]

For attenuating the residual noise

• Optimization of level diagram and components

- » Circuit has been simplified to minimize the influence of non-linear components.
- » High-speed 14 bit D/A converter has been adopted, and the quantization noise leading to the residual noise has been reduced.
- The smoothing filter which set the cutoff frequency according to the modulation band has been passed, and out-band spurious and noise have been eliminated.



SSB^(Single Side Band) phase noise

Noise of wide-band modulation signal for 3G has been lowered.

- C/N characteristic of excellent purity VCO has been applied.
 - » Alternate adjacent channel leakage power ratio is excellent.
 - -145 dBc/Hz typ.
 - -150 dBc/Hz typ.

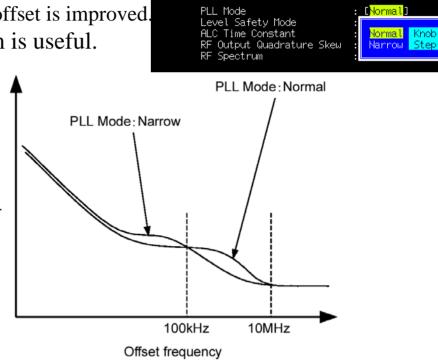
: 5MHz offset : 20MHz offset

Slide 29 MG3681A-E-I-1

Changing Phase noise

The compression of phase noise is changed by switching the loop characteristic of PLL synthesizer circuit. Thus noise of narrow band modulation signal for 2G can be lowered also.

» PLL Mode: Normal

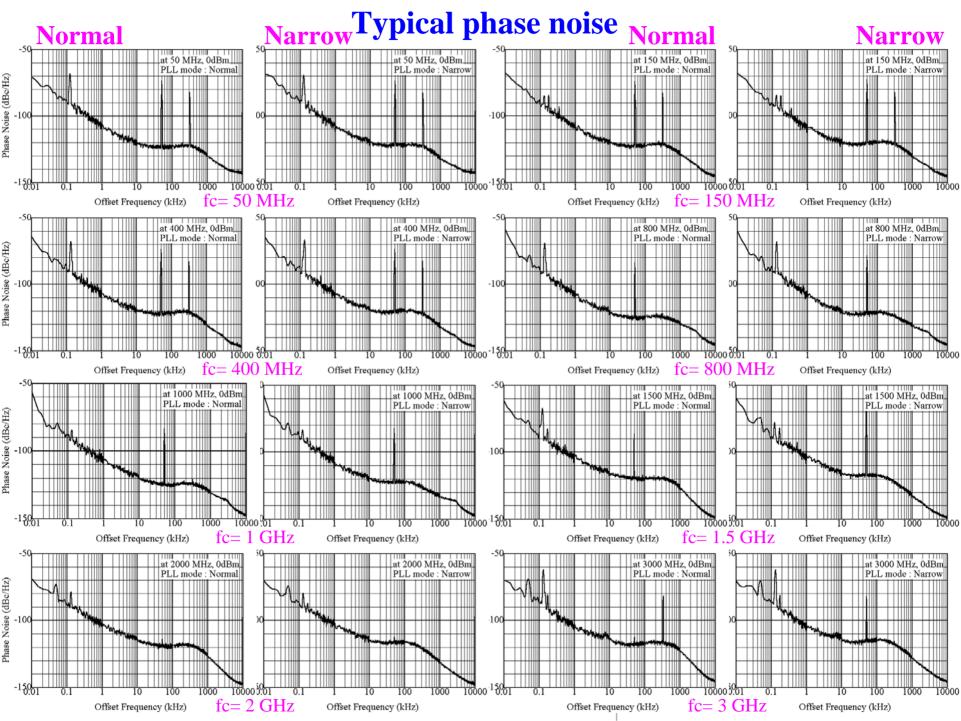

The phase noise up to 100 kHz offset is improved.

» PLL Mode: Narrow

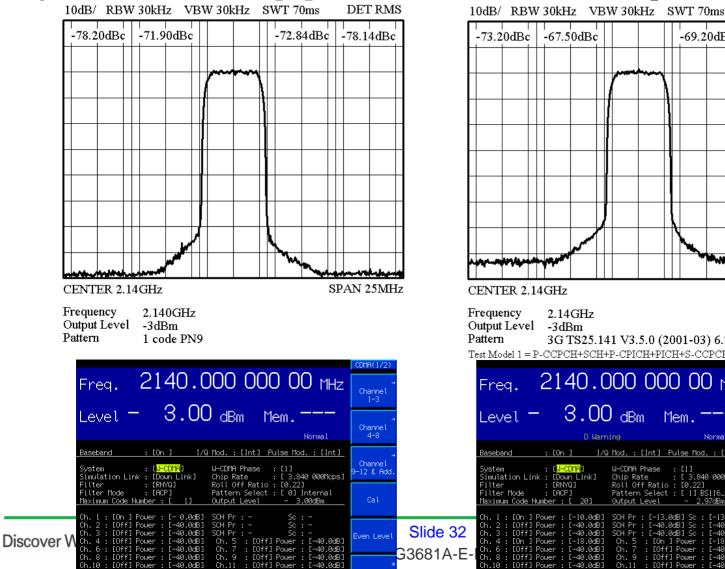
The phase noise of 100 k to 10 MHz offset is improved. Changing by the communication system is useful.

e.g.

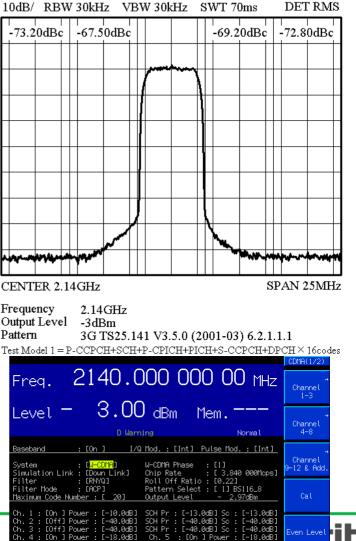
- W-CDMA: Normal
 CDMA2000: Narrow
 GSM/EDGE: Narrow
 PHS : Narrow
 PDC : Normal
- NADC(IS-136): Normal


E/RE Setup

Reference Freg(Auto)


: 10MHz. Int.

SSB phase noise



Adjacent channel leakage power ratio W-CDMA, \leq -3 dBm (\leq +5 dBm at installing Option42)

Adjacent channel leakage power ratio was achieved at top level.

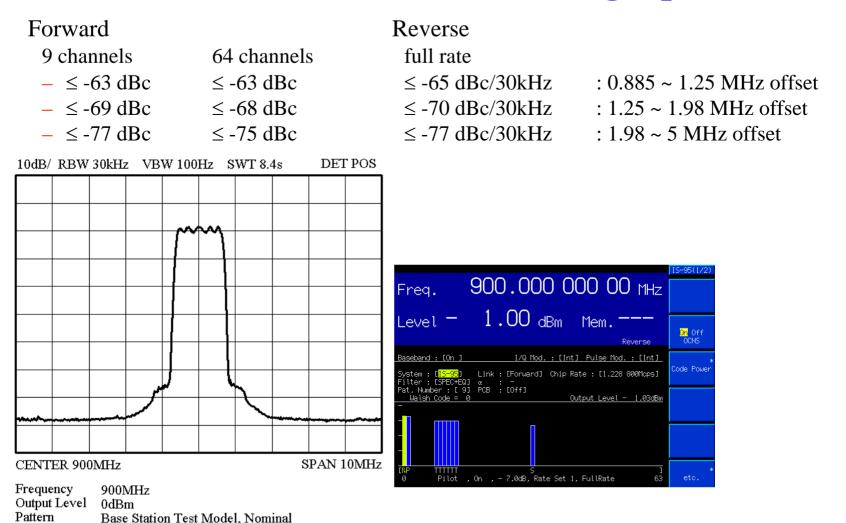
[Off] Power : [-40.0dB] Add Ch : Off Power : [-40.0dB]

[-40.0dB]

.0dB

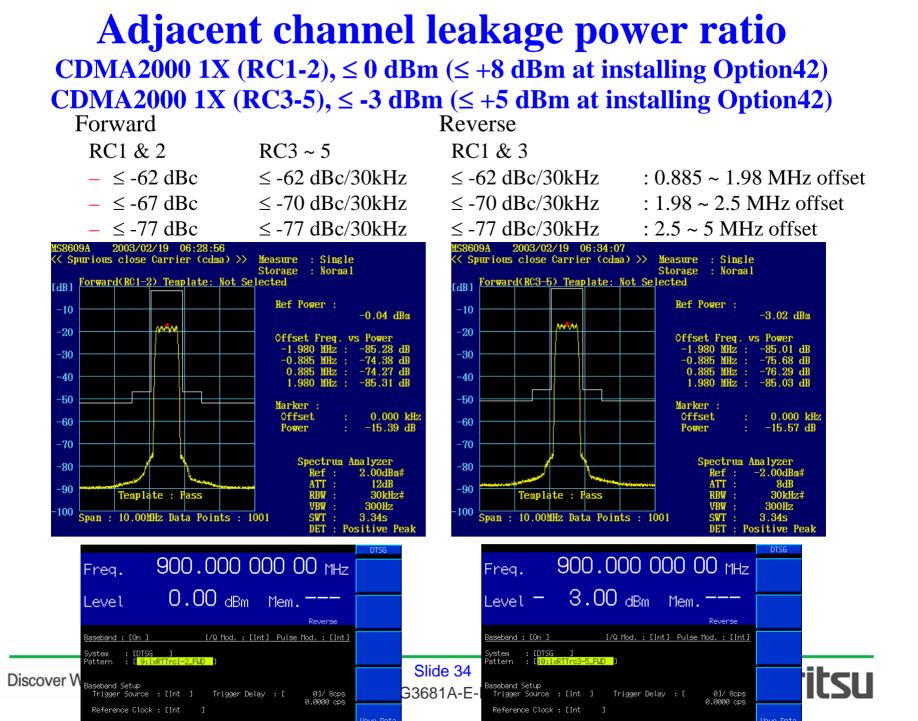
Power :

: [Off] Power : [-40.0dB]


Power : [- 1.1dB]

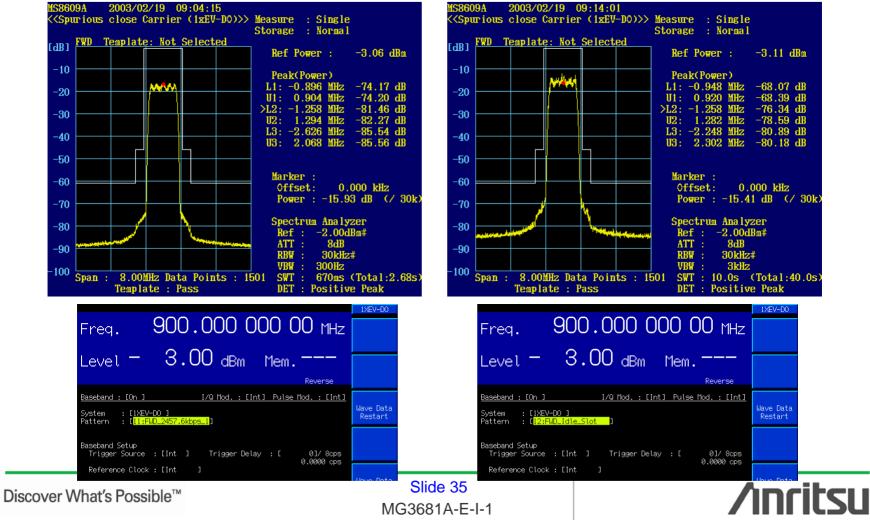
[Off] Power :

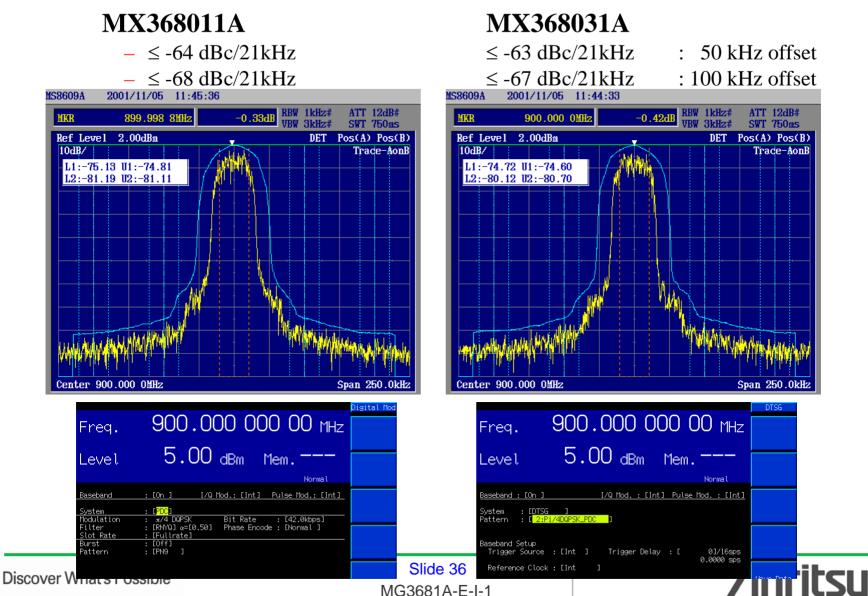
Add Ch : On


Ch.12 : [On] Power : [-10.0dB1

Adjacent channel leakage power ratio IS-95, \leq -1 dBm (\leq +7 dBm at installing Option42)

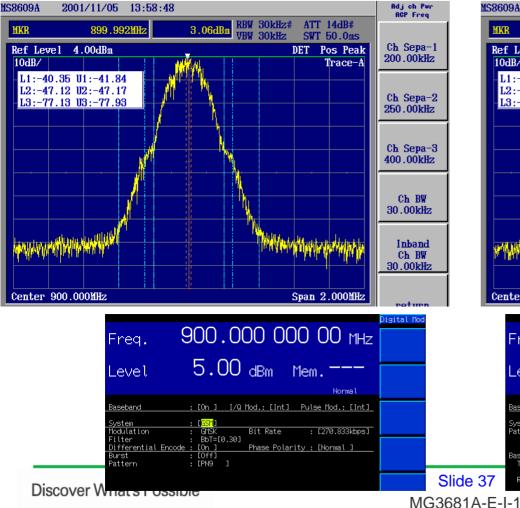
Discover What's Possible™


Slide 33 MG3681A-E-I-1


Adjacent channel leakage power ratio CDMA2000 1xEV-DO, \leq -3 dBm (\leq +5 dBm at installing Option42)

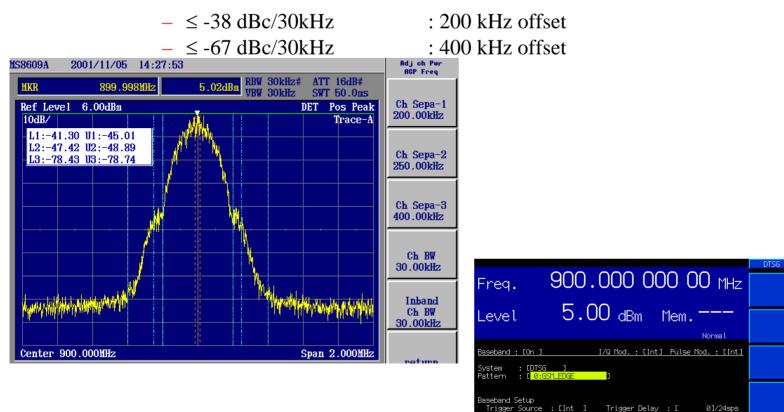
 $- \leq -65 \text{ dBc}/30 \text{kHz}$

- : 0.885 ~ 1.98 MHz offset
- $\leq -70 \text{ dBc}/30 \text{kHz}$
- $\leq -77 \text{ dBc/30kHz}$
- : 1.98 ~ 2.5 MHz offset
- $: 2.5 \sim 5$ MHz offset


Adjacent channel leakage power ratio PDC, ≤ +5 dBm

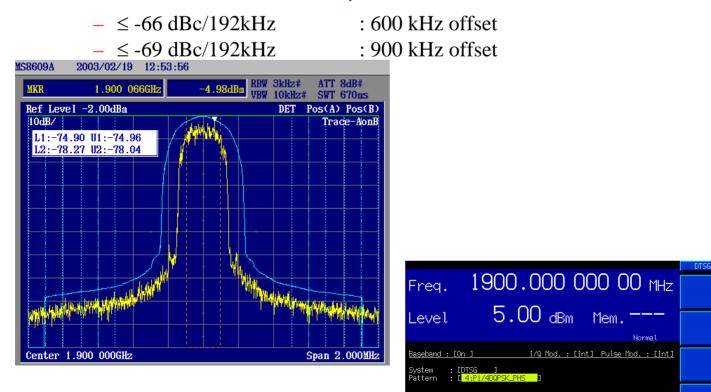

Adjacent channel leakage power ratio GSM/EDGE(GMSK), ≤ +5 dBm

MX368012A


- $\leq -35 \text{ dBc}/30 \text{kHz}$
- $\leq -66 \text{ dBc}/30 \text{kHz}$

MX368031A

Adjacent channel leakage power ratio GSM/EDGE(8PSK), ≤ +5 dBm


Slide 38 MG3681A-E-I-1

Reference Clock : [Int

0.0000 sps

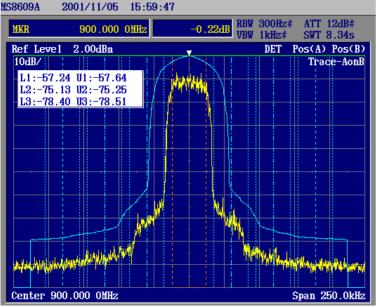
Adjacent channel leakage power ratio PHS, $\leq +5$ dBm

Discover What's Possible™

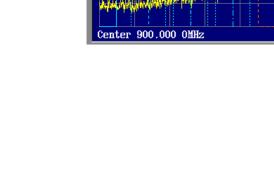
Slide 39 MG3681A-E-I-1

Baseband Setup Trigger Source : Int Reference Clock : [Int

/inritsu


Adjacent channel leakage power ratio NADC(IS-136), ≤ +5 dBm

: 30 kHz offset

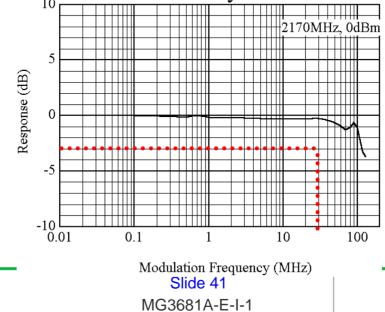

: 60 kHz offset

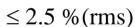
: 90 kHz offset

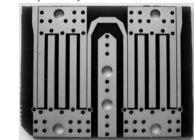
- $\leq -42 \text{ dBc}/24.3 \text{kHz}$
- $\leq -64 \text{ dBc}/24.3 \text{kHz}$
- $\leq -64 \text{ dBc}/24.3 \text{kHz}$

Freq.	900.000 000 00 MHz	DTSG
Level	5.00 dBm Mem.—— Normal	
<u>Baseband : [On]</u> System : [DTSG Pattern : [<mark>3:P</mark>	I/Q Mod. : [Int] Pulse Mod. : [Int]] <mark>i/4DQPSK_IS-138</mark>]	
Baseband Setup Trigger Source Reference Clock	:[Int] Trigger Delay : [0]/16sps 0.0000 sps :[Int]	

Slide 40 MG3681A-E-I-1

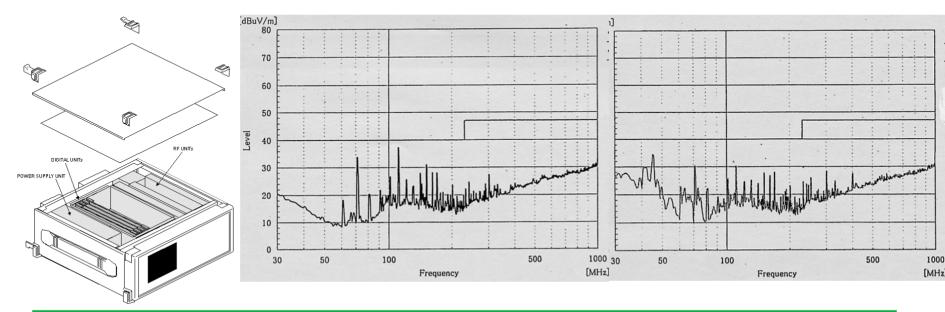

Wide-band and Excellent accuracy vector modulation


The filter group according to the output frequency is switched in **RF** circuit to attenuate the spurious close to carrier.

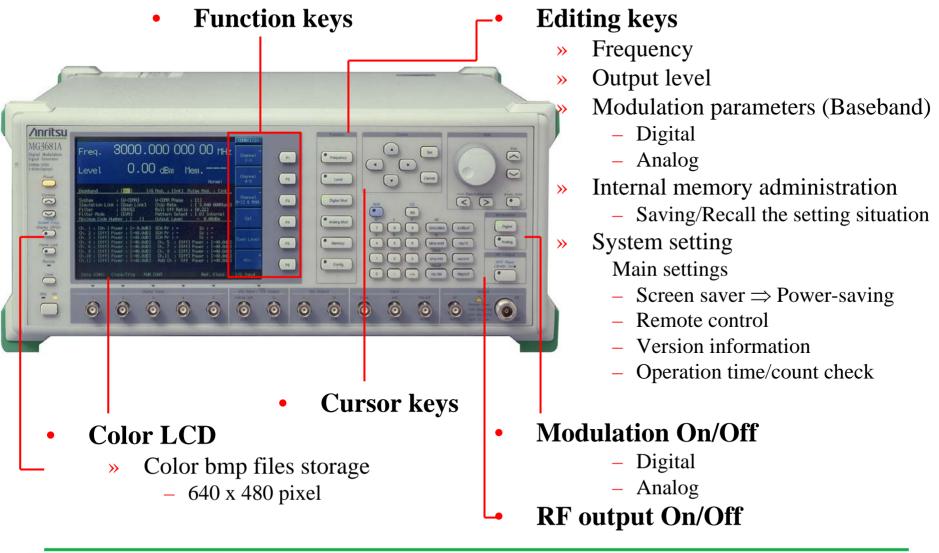

This filter group is the inter-digital band pass filter which can configure multi-stages in small area to satisfy out-band attenuation characteristic to eliminate the spurious in near-band, frequency response of vector modulation, pass band amplitude and group delay characteristic not to deteriorate vector modulation accuracy.

- » Vector modulation frequency response (3 dB bandwidth): ≥ 30 MHz
- » 3.84 Msps QPSK modulation accuracy:

Discover What's Possible™



Leakage emissions policy


The shield of signal generator is important in minimizing the signal generator's leakage emissions which interfere to the receiver in receiver sensitivity test at low level.

- » Mainframe cabinet has been structured with double shields.
- » The circuit units installed in mainframe have been mounted in the shield case, respectively.
- » Shield net has been equipped to display.
- » PC memory card interface has been equipped to rear panel. Horizontal

Discover What's Possible™

Slide 42 MG3681A-E-I-1

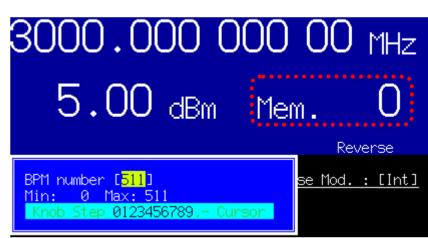
Slide 43 MG3681A-E-I-1

Panel key layout and role

» Operability has been improved by panel layout considering smooth operation flow of [Selecting functions] → [Moving cursor] → [Editing(input/select)] → [Setting]

• Operation guidance display

- » Panel operations include the parameter settings such as item selection, data input and character input. Available key types are displayed as guidance in pop-up window during parameter setting, in order to enable the operation without confusion.
 - Example of Level Offset setting


Rotary knob , Step keys, ten keys, Cursor keys

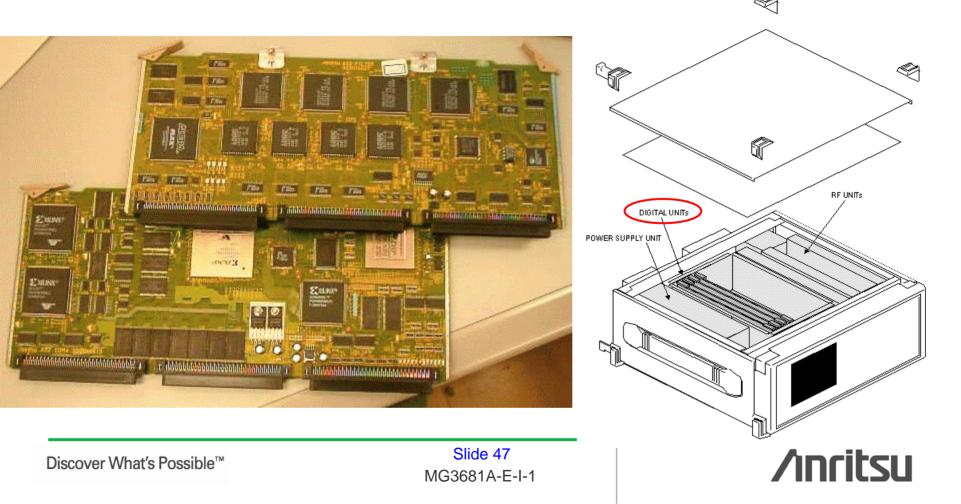
Modulation On/Off

- Digital: Vector modulation, Pulse modulation
- Analog: AM, FM, ϕ M
 - Internal analog modulation with AF signals of sine, triangular, square and sawtooth wave is possible at installing Option21 AF Synthesizer.
- » These modulations are switched On or Off by one touch.
- The combination of digital modulation and analog modulation can achieve external ALC function by AM, also it is useful for the simulation of amplitude variation by AM and frequency variation by FM.

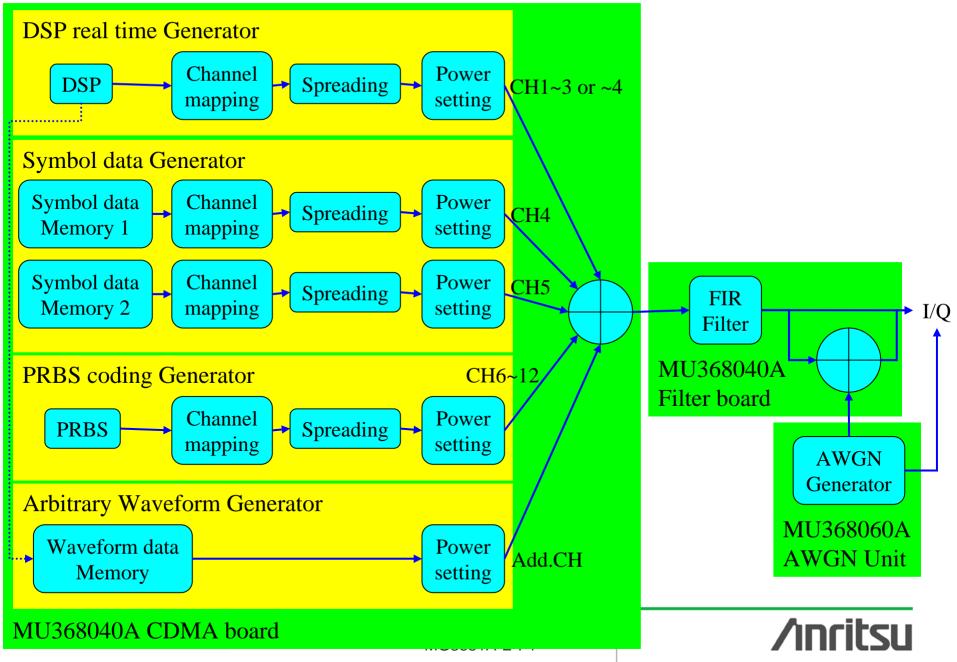
Internal memory administration

- » Basic Parameter Memory (BPM)
 - 512 types of frequency and output level are savable.
 - Sweepable continuous recall and high-speed recall by external trigger signal are performable.
- » All Parameter Memory (APM)
 - all settings including the modulation parameter setting of baseband in addition to frequency and output level are savable.
 - 100 types of settings are savable regardless of the quantity of installed expansion units.
 - Max. 8 characters can be inputted each title for easy confirmation.
- » Memory Export/Import
 - It is useful for copying to other MG3681A and backup of memory, because BPM and APM can be save in PC memory card and recalled from PC memory card.

					Recall
All Parameter	Recall				
Memory No. Title : WC					
No:Title	No:Title	No:Title	No:Title	No:Title	
0:WCDMA UL	20:	40:	60:	80:	
1:WCDMA DL	21:	41:	61:	81:	
2:PDC	22:	42:	62:	82:	
3:GSM	23:	43:	63:	83:	ж
4:1×EV-DO 5:CDMA2k1×	24: 25:	44: 45:	64: 65:	84: 85:	List
6:AWGN	26:	46:	66:	86:	
7:	27:	47:	67:	87:	
8:	28:	48:	68:	88:	
9:	29:	49:	69:	89:	
10:	30:	50:	70:	90:	
11:	31:	51:	71:	91:	
12: 13:	32:	52: 53:	72: 73:	92: 93:	
13:	33: 34:	53: 54:	73: 74:	93: 94:	
15:	35:	55:	75:	95:	
16:	36:	56:	76:	96:	
17:	37:	57:	77:	97:	→
18:	38:	58:	78:	98:	Return
19:	39:	59:	79:	99:	


/inritsu

Slide 46 MG3681A-E-I-1


Expansion unit

- Expansion unit is the digital board to generate digital I/Q signal of baseband.
 - » Digital I/Q signal is converted to analog I/Q signal by D/A converter.

MU368040A CDMA Modulation Unit

Block diagram

MU368040A CDMA Modulation Unit

• DSP real time Generator

» Mapping physical layer data achieved real-time coding by DSP to physical channel

• Symbol data Generator

- » For the channels which require power/burst control per symbol such as W-CDMA DL-DPCH and PRACH
- » Symbol signal pattern files of physical layer before spreading
 - Downloading from PC memory card to internal memory
 - Internal memory capacity CH4: 4Mbit, CH5: 4Mbit
 - W-CDMA Downlink ≤ 512 ksymbol

e.g. DL-DPCH 30ksps: 1747 frame

- W-CDMA Uplink ≤ 1 Msymbol

PRBS coding Generator

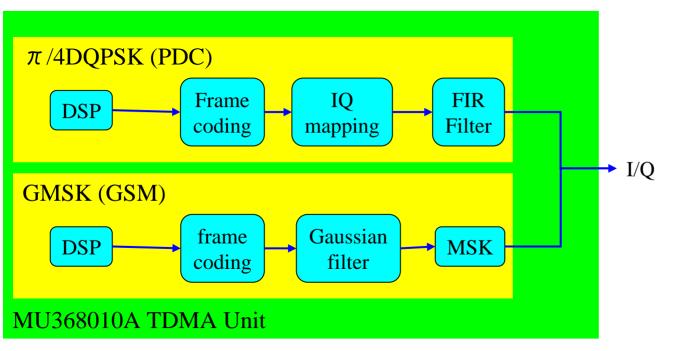
- » Mapping PRBS^(Pseudo-random Binary Sequence) data to physical channel
- Arbitrary Waveform Generator
 - » For multiple channels such as W-CDMA DPCH and OCNS
 - Signal pattern files of physical layer before FIR filtering (before over sampling)
 *W-CDMA over sampling rate: 8× 3.84 Mcps = 30.72 MHz
 - Downloading from PC memory card to internal memory
 - Internal memory capacity 512 ksamples/channel (2 Mbyte)
 - W-CDMA 3.84 Mcps ≤ 13 frame (130 ms)

/inritsu

MU368040A CDMA Modulation Unit

• Firmware configuration for flexible system support

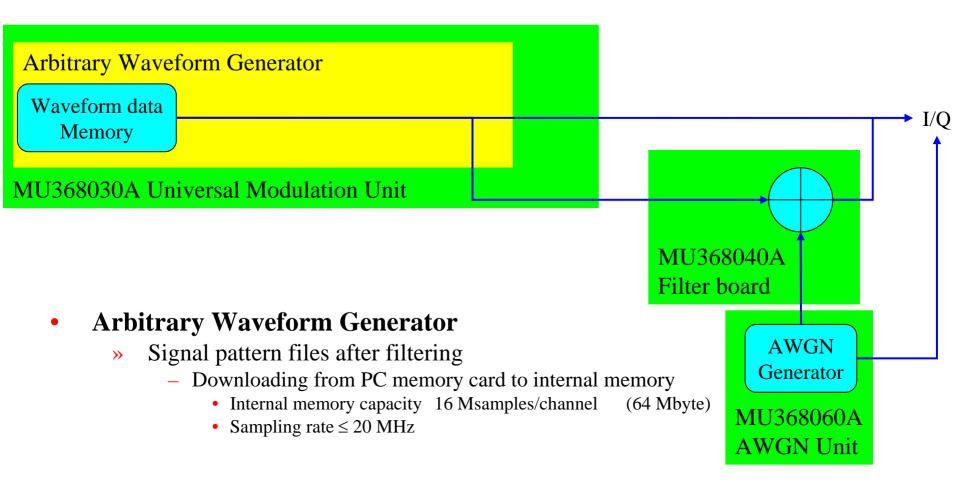
- » Low-rate signal processor before spreading switches 2 methods according to the usage.
 - Real-time coding method by DSP
 - Memory method for downloading by cycle output of external created data pattern
- » Signal processor from high-speed spreading to FIR filtering has been adopted high accumulation FPGA of 1M gates for flexible system support.
- » These DSP programs, Signal pattern files for downloading and FPGA configuration data can be rewritten from PC memory card.
- » FIR filter which requires high-speed processing has adopted the dedicated IC, as there is not the necessity for functional change.


High-speed data transmission

High-speed signal processing ability is required for baseband as W-CDMA specifies high-speed data communication up to 384kbps in moving state and up to 2Mbps in static state.

/incitsu

» Max. 1600MIPS of high-performance DSP has been adopted for real-time coding. It enables the real-time channel coding up to 384kbps.


MU368010A TDMA Modulation Unit Block diagram

Slide 51 MG3681A-E-I-1

MU368030A Universal Modulation Unit Block diagram

Software

•	MX368041B W-CDMA Software	54 🕑
	 MX368041B-11 HSDPA Signal Pattern 	56 🖻
	– MX368141A HSDPA IQ producer	73 🖻
•	MX368042A IS-95 Device Test Software	77 🖻
•	MX368011A PDC Software	84 🖻
•	MX368012A GSM Device Test Software	92 🖻
•	MX368031A Device Test Signal Generation Software	102 🖻
•	MX368033A CDMA2000 1xEV-DO Signal Generation Software	111 🖻
	» MX368133A CDMA2000 1xEV-DO IQproducer™	120 🖻
•	MX368034A PDC Packet Software	126 🖻
•	MX368035A PHS Signal Generation Software	133 🖻
•	MU368060A AWGN	141 🖻

/inritsu

MX368041B W-CDMA Software

- Downlink/Uplink W-CDMA test signals for 3GPP(FDD) standard can be outputted by installing the MX368041B W-CDMA Software in the MU368040A CDMA Modulation Unit.
- In R&D/production process of components, base stations (BS) and user equipment (UE), the functions to support various applications are provided as the signal source for components, the wanted signal source and the interfering signal source for receiver test.

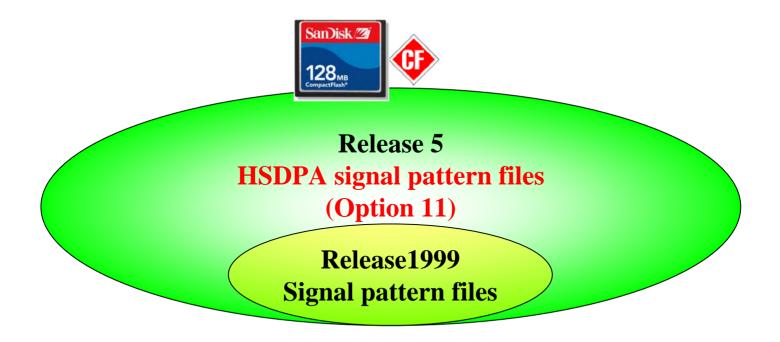
0 8	CDMA(1/2)			CDMA(1/2)
Freq. 2112.500 000		Freq. 1922.5	00 000 00 MHz	Channel 1−3
Level 0.00 dBm Mem	1-5 1. ↓ Channel 4-8	Level 0.00	dBm Mem.———	1-3 → Channel 4-8
Baseband : [On] I/Q Mod. : [Int] Puls		Baseband : [On] I/Q	Mod. : [Int] Pulse Mod. : [Int]	
System :[<mark>W-CDMA</mark>] W-CDMA Phase :[Simulation Link : [Down Link] Chip Rate :[Filter : [RNYQ] Roll Off Ratio :[3.840 000Mcps] 9-12 & Huu.	Simulation Link : [Up Link]	W-CDMA Phase : [1] Chip Rate : [3.840 000Mcps] Roll Off Ratio : [0.22]	Channel 9-12 & Add.
Filter Mode : [EVM] Pattern Select : [Maximum Code Number : [20] Output Level		Filter Mode : [EVM]	Pattern Select : [18] ULRMC12k Output Level – 0.03dBm	Cal
Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Ch. 2 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Ch. 4 : [On] Power : [-18.0dB] Ch. 5 : [On] Pou Ch. 6 : [Off] Power : [-40.0dB] Ch. 7 : [Off] Pou	Sc : [-40.0dB] Sc : [-40.0dB] wer : [-18.0dB] wer : [-40.0dB]	Ch. 1 : [On] Power : [- 4.6dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] Ch. 4 : [On] Power : [- 1.9dB] Ch. 6 : [Off] Power : [-40.0dB]	Ch. 5 : [Off] Power : [-40.0dB] Ch. 7 : [Off] Power : [-40.0dB]	Even Level
Ch.10 : [Off] Power : [-40.0dB] Ch.11 : [Off] Power	wer : [-40.0dB] wer : [-40.0dB] * wer : [- 1.1dB] etc.	Ch. 8 : [Off] Power : [-40.0dB] Ch.10 : [Off] Power : [-40.0dB] Ch.12 : [Off] Power : [-40.0dB] AWGN : [Off] C/N :	Ch. 9 : [Off] Power : [-40.0dB] Ch.11 : [Off] Power : [-40.0dB] Add Ch : Off Power : [-40.0dB] Wanted - Noise -	* etc.
Data (CH4) Clock/Trig PWR CONT	Ref. Clock I/Q Input	Data (CH4) Clock/Trig PWR C	ONT Ref. Clock	I/Q Input
	Slide	54	<u>An</u>	iken

Discover What's Possible™

MG3681A-E-I-1

Support of test signal format

- Just to select the signal patterns for TS 25.141 and TS 34.121 test specifications without setting complicated parameters of 3GPP! Simple operation
- **Quick support** is provided by updating the signal pattern files saved from PC memory card to internal memory and DSP program for real-time coding.
 - » Supporting 3GPP update and special signal patterns
 - "Product Introduction MX368041A/B Update News" is provided.
 - Version-up History, How to check Version, How to upgrade, File configuration in PC memory card, Signal pattern List


Freq. 2112.500 000 00 MHz	Freq. 2112.500 000 MHz
Level - 3.00 dBm Mem	Level 0.00 dBm Mem
Normal	Normal
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] Internal 11:D32T48s0 22:UL_AMR#1 Knob 1:BS11657 12:DAMR18s0 23:UL_AMR#2 Step [1] 2:BS13257 13:DAMR2800 23:UL_AMR#3 Cursor [0] 3:BS16457 14:DAMR2800 25:UL_AMR#3 Cursor [0] Internal 4:BS257 15:DISDN8800 26: - 3.00dBm 5:BS31657 16:DL_C31 27: - - 3.00dBm 6:BS33257 16:ULRMC12k 29: Sc : - - - - 8:D32T1880 19:ULRMC144 30: -	Baseba Patterm Contents (No.11:D32T48s0) Channel combination : TS25.101 V3.8.0 Annex C3.2 for Performance requirement 1:BS Lint1 Demodulation of DCH TEST4 (BLER=10^-2) Mcps] 3:BS ch1 : P-CCPCH + P/S-SCH 4:BS nal 3:BS 5:BS 36 TS25.211 V3.7.0, TS25.212.213 v3.6.0 6:BS nal 3:BS 7:BS DL reference measurement channel 384 kbps 8:D3 ch5 : PICH 9:D3 0.0dB]
10:D32T38s0 21:ULRMC64k 32: ower : [-40.0dB] ower : [-40.0dB]	10:D3 ch2-3, ch7-12: 0FF 0.0dB] Add ch: 0CNS (TS25.101 V3.8.0 table C.6) 0.0dB]
Total Share : Symbol = 22 Wave = 45 Ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB]	Total Scrambling code number = 00h 3.0dB1 * 0.0dB1 Close 0.0dB1 *
Selecting Signal pattern in internal memory	Q Input Confirming of Signal pattern contents Ref. Clock 1/Q Input
ar \A/bat/a Baasibla™	Slide 55

Discover What's Possible™

Slide 55 MG3681A-E-I-1

Pattern files of test signal format MX368041B-11 (Option) HSDPA Signal Pattern

» This package added the signal pattern file specified in Release5 to Release1999 signal pattern file of an appendix in MX368041B.

Slide 56 MG3681A-E-I-1

Signal patterns For evaluating components in BS transmitter

0				U	-	
Test item	Channel combination	Parameter	Patt. name	Added by op	tion11	
TS25.141 6.1.1	TS25.141 6.1.1.1	16 DPCH	BS11657	B11657d		
Transmitter Test Models	Test Model 1		BS116571	B11657d2		
			BS116572			
			BS116573			Test Models
		32 DPCH	BS13257	B13257d	>>	Test woders
			BS132571	B13257d2		6111
			BS132572			- 6.1.1.1
			BS132573			Test Model 1 Multi-carrier
		64 DPCH	BS16457	B16457d		
			BS164571	B16457d2		(2 carriers)
			BS164572			(2 carriers)
			BS164573			
	TS25.141 6.1.1.2	-	BS257	-		
	Test Model 2		BS2571			
			BS2572			
			BS2573			
	TS25.141 6.1.1.3	16 DPCH	BS31657			2 comions
	Test Model 3		BS316571			2 carriers
			BS316572			*****d: for lower freq.
			BS316573			******d2: for higher freq.
		32 DPCH	BS33257	1		uz. for higher freq.
			BS332571			
			BS332572			
			BS332573			
	TS25.141 6.1.1.4	-	BS457			
	Test Model 4		BS4571			
			BS4572			
			BS4573			
	TS25.141 6.1.1.4A	2 HS-PDSCH + 6 DPCH		BS5_257	B5_257d	– 6.1.1.4A
	Test Model 5				B5_257d2	
				BS5_2572		Test Model 5 (HSDPA)
				BS5_2573		
		4 HS-PDSCH + 14 DPCH			B5_457d	 Multi-carrier (2 carriers)
					B5_457d2	
				BS5_4572		
				BS5_4573		
		8 HS-PDSCH + 30 DPCH	ř 🕇		B5_857d	
					B5_857d2	
				BS5_8572		
				BS5_8573		
			V	11_1110		

Discover What's Possible™

Slide 57 MG3681A-E-I-1

Signal patterns For receiver and performance testing for BS

				-	
Testitem	Channel combination	Parameter	Patt. name	Added by	option11
TS25.141	TS25.141 Annex A.1	TS25.141 Annex A.2	ULRMC12k		
7 Receiver characteristics		TS25.141 Annex A.3	ULRMC64k		
8 Performance requirement		TS25.141 Annex A.4	ULRMC144		
		TS25.141 Annex A.5	ULRMC384		
8.8.1 RACH preamble	TS25.211 5.2.2.1	TS25.213 4.3.3		PRE	
8.8.3 RACH message		TS25.141 Annex A.7		R168	R360
8.9.3 CPCH message	TS25.211 5.2.2.2	TS25.141 Annex A.8		C168	C360
8.10 SSDT	TS25.141 Annex A.1	TS25.141 Annex A.2		SSDTa	SSDTb
-	TS25.104 Annex A.1	TR25.944	UL_AMR#1		
		4.1.2.2.1.1 DCCH			
		4.1.2.2.1.2 AMR TFCS#1			
		4.1.2.2.2.2			
		TR25.944	UL_AMR#2		
		4.1.2.2.1.1 DCCH			
		4.1.2.2.1.2 AMR TFCS#2			
		4.1.2.2.2.2			
		TR25.944	UL_AMR#3		
		4.1.2.2.1.1 DCCH			
		4.1.2.2.1.2 AMR TFCS#3			
		4.1.2.2.2.2			
		TR25.944	UL_ISDN		
		4.1.2.2.1.1 DCCH			
		4.1.2.2.1.6 ISDN			
		4.1.2.2.2.2			
	<u>– 8.8 RACH</u>	performance	•	•	

- - 8.8.1 RACH preamble detection in static propagation conditions
 - RACH preamble detection in multipath fading case 3 • 8.8.2
 - Demodulation of RACH message in static propagation conditions • 8.8.3
 - Demodulation of RACH message in multipath fading case 3 • 8.8.4
- 8.9 CPCH Performance
 - 8.9.3 Demodulation of CPCH message in static propagation conditions

- 8.9.4 Demodulation of CPCH message in multipath fading case 3
- 8.10 Site Selection Diversity Transmission (SSDT) Mode

Signal patterns For receiver and performance testing for UE

Testitem	Channel combination	Parameter	Patt. name	Added by op	otion11			
rS25.101	TS25.101 Annex C.3.1	TS25.101 Annex A.3.1	DL_C31					
Receiver characteristics	TS25.101 Annex C.3.2		D32T18s0					
3 Performance requirement			D32T18s8					
			D32T18s9					
		TS25.101 Annex A.3.2	D32T28s0					
			D32T28s8					
			D32T28s9					
		TS25.101 Annex A.3.3	D32T38s0					
			D32T38s8					
			D32T38s9					
		TS25.101 Annex A.3.4	D32T48s0					
			D32T48s8					
			D32T48s9					
	TS25.101 Annex C.4		DL_INTR					
8.3 in multi-path (Case7)	TS25.101 Annex C.3.5	TS25.101 Annex A.4A	$ \land $	4Ps0				\
Test21~25				4Ps8				
				4Ps9				
8.6.1	TS25.101 Annex C.3.3	TS25.101 Annex A.3.1		OTD1s0	OTD2s0			
open-loop transmit diversity	1			OTD1s8	OTD2s8			
	T005 404 A 0.0 0	T005 404 Ar A 5	\downarrow	OTD1s9	OTD2s9	DODGIE	DODGGE	DODOOT 11
8.9	TS25.101 Annex C.3.2	TS25.101 Annex A.5			DCP12540			
Downlink compressed mode	1				DCP12548		DCP22548	
		T005 404 A			DCP12549		DCP22549	DCP23549
8.10 BTFD		TS25.101 Annex A.4		BTFD1s0	BTFD2s0	BTFD3s0		
				BTFD1s8	BTFD2s8	BTFD3s8		
		TS25.101 Annex A.6		BTFD1s9 PCHs0	BTFD2s9	BTFD3s9	J	
3.12 PCH		1525.101 Annex A.6						
				PCHs8				
	TS25.101 Annex C.5.1	TS25.101 Annex A.7.1		PCHs9 F1P0s0	4			
7.4.2 Maximum input level HS-PDSCH	Table C.8	1525.101 Annex A.7.1		F1P0s0 F1A0s0				
	Table C.o			F1A0S0 F2P0s0				
Performance requirement (HSDPA)				F2P0S0 F2A0s0				
(HODFA)				F3P0s0				
				F3A0s0				
				F4P0s0				
				F5P0s0				
	TS25.101 Annex C.3.2	TR25.944	DAMR18s0	1 01 000	-			
		4.1.1.3.1.1 DCCH	DAMR18s8		1			
		4.1.1.3.1.2 AMR TFCS#1	DAMR18s9					
		4.1.1.3.2.2						
		TR25.944	DAMR28s0		1			
		4.1.1.3.1.1 DCCH	DAMR28s8					
		4.1.1.3.1.2 AMR TFCS#2	DAMR28s9					
	1	4.1.1.3.2.2			1			
		TR25.944	DAMR38s0		1			
	1	4.1.1.3.1.1 DCCH	DAMR38s8		1			
	1	4.1.1.3.1.2 AMR TFCS#3	DAMR38s9		1			
		4.1.1.3.2.2						
		TR25.944	DISDN8s0		1			
	1	4.1.1.3.1.1 DCCH	DISDN8s8		1			
	1	4.1.1.3.1.6 ISDN	DISDN8s9		1			
	1	4.1.1.3.2.5		1	1			

Demodulation of DCH in multibath fading propagation conditions (Case 7) Test 21~25 6 Demodulation of DCH in downlink ransmit diversity modes • 8.6.1 Demodulation of DCH in open-loop Transmit diversity mode 9 Downlink compressed mode

.10

Blind transport format detection BTFD)

.12

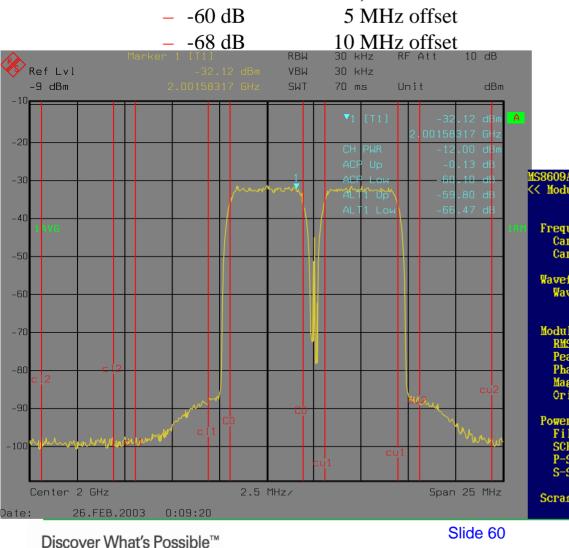
Demodulation of Paging Channel PCH)

.4

Maximum input level

• 7.4.2 HS-PDSCH for 16QAM

Performance requirement (HSDPA)


Discover What's Possible™

Silue 59 MG3681A-E-I-1

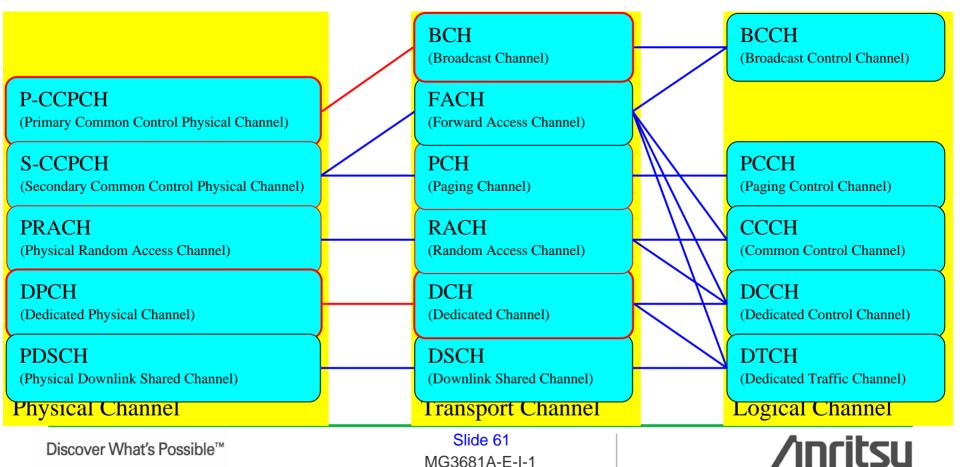
Multi-carrier typical ACLR

MG3681A-E-I-1

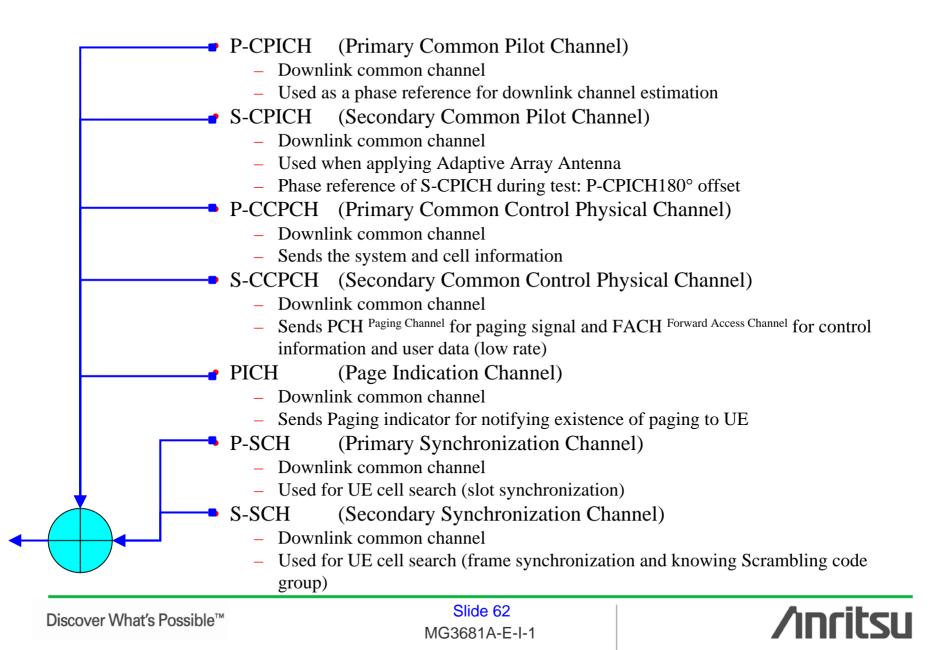
• Test Model 1: 64 DPCH, \leq -8 dBm

8609A 2003/05/28 04:00:46 Modulation Analysis (W-CDMA) >>	Measure	: Single
		: Normal
	Trace	: Non
Frequency		
Carrier Frequency	: 2	137.500 000 2 MHz
Carrier Frequency Error		0.000 2 kHz
		0.000 ppm
Waveform Quality		
Waveform Quality Factor		0.99926
Modulation RMS EVM Peak EVM Phase Error Magnitude Error		2.70 % (rms) 7.15 % 1.09 deg. (rms) 1.92 % (rms)
Origin Offset Power		-74.61 dB
Filtered Power		-11.14 dBm
SCH(Total)		-12.97 dB
P-SCH		-16.07 dB
S-SCH		-15.89 dB
5 501		13.0 3 ull
Scramble Code Number		00000

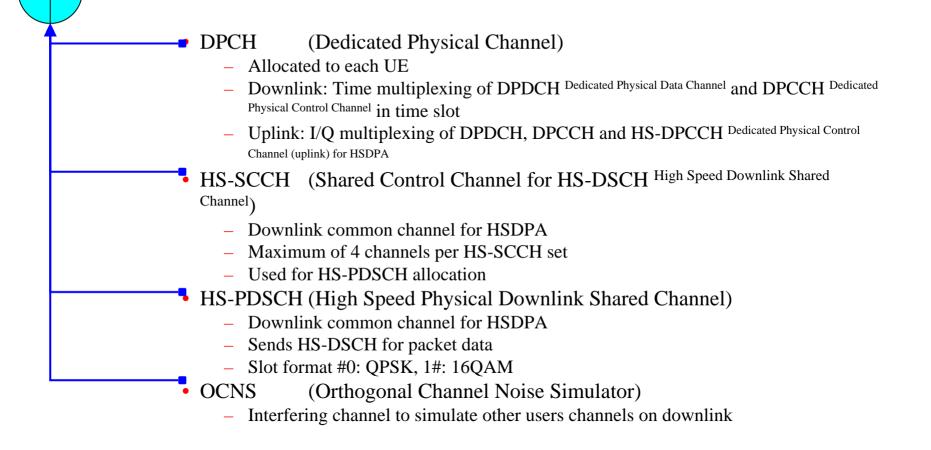
/inritsu


Real-time generation of test signal format

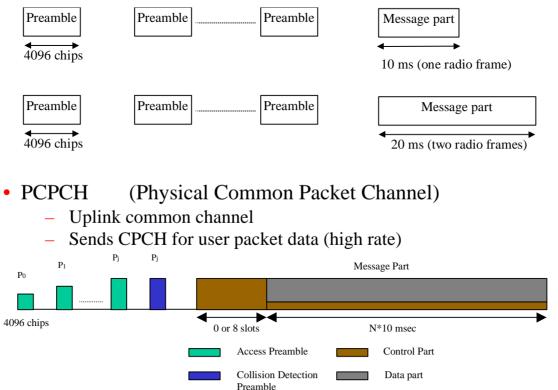
• Simple editing on display


Supporting various test cases

» Parameters for 5 types of physical channels and 2 types of transport channels


For reference) Mapping relations among main physical channels, transport channels and logical channels

Main physical channels for test


Main physical channels for test

Main physical channels for test

• PRACH (Physical Random Access Channel)

- Uplink common channel
- Sends RACH for control information and user data (low rate)

Slide 64 MG3681A-E-I-1

Real-time generation of Downlink physical channel

- BCH transport channel mapping
- SCH TSDT: On, Off
 - TSDT
 - Time Switched TX Diversity
 - Open loop mode
 - Switching TX antenna (SCH) per slot
- » CPICH

- (CH1~3)
- Antenna: 1,2
 - For TX diversity
 - STTD encoding (Antenna: 2)
 - STTD
 - Space Time Block Coding Based Transmit Antenna Diversity
 - Open loop mode
 - Controlling Symbol patterns on antenna2 side
- » DPCH
 - DCH transport channel mapping
 - Slot format: #0 to #15
 - TPC: TPC command of 4 frames (60 slots) cycle

(CH4)

- TPC
 - Transmit Power Control
 - Closed loop power control
 - * Inner loop power control
 - Controlling to equalize with target SIR
 - * Outer loop power control Correcting target SIR to equalize with target

Slide 65 MG3681A-E-I-1

						PhCH Edit
Physical char	hnel		: P-CCPCH			→ TrCH Edit
SCH			Data			
2			18			
Data SCH TSTD Antenna			: [<mark>BCH]</mark>] : [Off] : [1]			
						→ Return
Data (CH4)	Cloc	k/Trig	PWR CONT	Ref. Clo	ok	I/Q Input
Physical char	nnel		: DL-DPCH			PhCH Edit TrCH Edit
Data 1	TPC	TFCI	Data 2	Pilot		
(6)	(2)	(2)	(22)	(8)		
Slot Forma Data TPC TFCI	at		: [<mark>#11</mark>] : [DCH] : [555 5555 5555 5555]н : [000]н			
Data TPC TFCI Antenna		er Rati	: [DCH] : [555 5555 5555 5555]н			
Data TPC TFCI Antenna DPCCH/DPDO		er Rati	: [DCH]] : [555 5555 5555 5555]H : [000]H : [1]]			
Data TPC TFCI Antenna DPCCH/DPDO		er Rati	: [DCH]] : [555 5555 5555 5555]H : [000]H : [1]]			Return 🕈
Data TPC TPCI Antenna DPCCH/DPDO BER	CH Pow		: [DCH] : [555 5555 5555 5555 5555]+ : [000]+ : [1] : [0.0]dB : -	Ref. Clo	ok	Return 1/0 Input

Real-time generation of Uplink physical channel

- » DPCCH (CH1~3)
 - Slot format: #0, #2, #5
 - TPC: TPC command of 4 frames (60 slots)
 - cycle
 - TPC
 - Transmit Power Control
 - Closed loop power control
 * Inner loop power control
 Controlling to equalize with target SIR

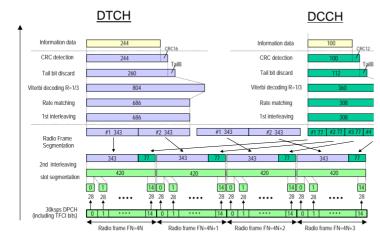
* Outer loop power control Correcting target SIR to equalize with target BER/BLER

» DPDCH (CH4)
 – DCH transport channel mapping

			PhCH Edit
Physical channel	: UL-DPCCH		
Pilot	TFCI	FBI TPC	
(6)	(2)	(0) (2)	
Slot Format TFCI FBI TPC	: [#0] : [000]+ : - : [555 5555 5555 5555	5]H	
Data (CH4) Clock/Trig	PWR CONT	Ref. Clock	Return →
			PhCH Edit
Physical channel	: UL-DPDCH		TrCH Edit
	Data (40)		
Slot Format Data BER	: #2 : [<mark>DCH]</mark>] : -		
Screen Copy Completed			, Return
Data (CH4) Clock/Trig	PWR CONT	Ref. Clock	1/Q Input
		/incite	

Slide 66 MG3681A-E-I-1

Real-time generation of Downlink transport channel


» BCH (P-CCPCH data)

- 3GPP TS 25.944

Transport block size	246
CRC	16 bits
Coding	CC, coding rate = 1/2
TTI	20 ms
The number of codes	1
SF	256

» DCH (DPCH data)
– 3GPP TS 25 101

	TrCH1	TrCH2
Parameter	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12
Position of TrCH in radio frame	fixed	fixed

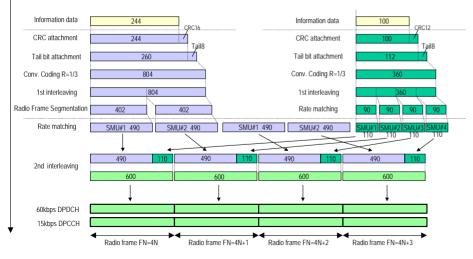
– BER, BLER

- Generating the error
- 0 to 10 %, 0.1 % resolution

					TrCH Edit
Transport Chann	el	: BCH			
SFN Co	ntrol	BCH	CRC	Tail	
(11)	(20)	(215)	16	8	
TTI Coding BCH Data SFN Control SFN Initial Control Data		: 20ms : CC_1/2 : [PN9] : [11]bit : [20]bit : [0000]н : [0000]н			
					Return
Data (CH4) C	lock/Trig	PWR CONT	R	ef. Clock	k I/Q Input
		PWR CONT	R	ef. Clock	
	el 8 Slot Fo		R	ef. Clock	
Transport Chann SF 12	el 8 Slot Fo	: DCH rmat : #11		ef. Clock TrCH4	TrCH Edit
Transport Chann SF 12 TrCH No. 2 Data TTI Max.TrBk Size TrBk Size TrBk Size TrBk Set No. CRC Tail Coder	el 8 Slot Fo DTX TrCH1 [PN9] [20]ms [244]bit [244]bit 1 244]bit 1 X 8bit [CC_1/3] 0 X 12bit	: DCH rmat : #11 : [Fix] TrCH2 [PN9] - [40]Jbit - [100]Jbit - [100]Jbit - [12]Jbit - [12]Jbit - [12]Jbit - [0 x 12bit - [226] -			TrCH Edit
Transport Chann SF 12 TrCH No. 2 Data TTI Max.TrBk Size TrBk Size TrBk Set No. CRC Tail Coder Termination RM attribute Rept/Punc BER	el 8 Slot Fo DTX TrCH1 [PN9] [20]ms [244]bit [244]bit [244]bit [244]bit [244]bit [244]bit [1 × 8bit [CC_1/3] 0 × 12bit [256]	: DCH rmat : #11 : [Fix] TrCH2 [PN9] - [40]ms - [100]bit - [100]bit - [100]bit - [12]bit - [12]bit - [12]bit - [0 X l2bit - 0 X l2bit -	TrCH3		TrCH Edit

Discover What's Possible™

Slide 67 MG3681A-E-I-1


Real-time generation of Uplink transport channel

» DCH (DPDCH data) – 3GPP TS 25.101

	TrCH1	TrCH2
Parameters	DTCH	DCCH
Transport Channel Number	1	2
Transport Block Size	244	100
Transport Block Set Size	244	100
Transmission Time Interval	20 ms	40 ms
Type of Error Protection	Convolution Coding	Convolution Coding
Coding Rate	1/3	1/3
Rate Matching attribute	256	256
Size of CRC	16	12

<u>DTCH</u>

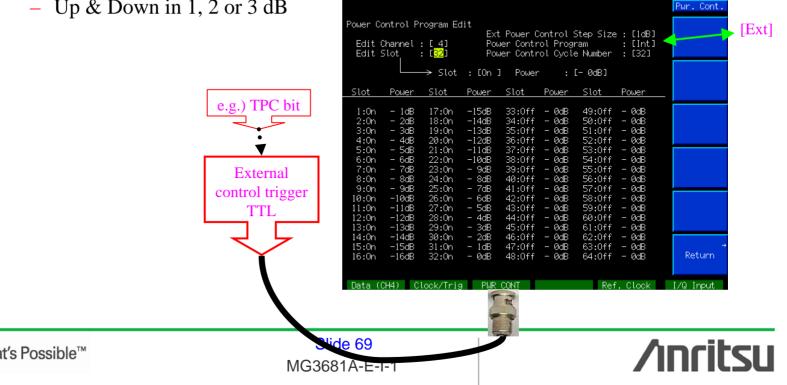
Transport Chan	nel	: DCH			
SF 64 Slot Format : #2 TrCH No. [<mark>2</mark>]					
	TrCH1	TrCH2	TrCH3	TrCH4	
Data TTI Max.TrBk Size	[PN9] [20]ms	[PN9] [40]ms -	-		
TrBk Size	[244]bit	[100]bit			
TrBk Set No.		TrBk X [1]			
CRC Tail	[16]bit 1 X 8bit	[12]bit 1 X 8bit	_	-	
Coder	[CC_1/3]	[CC_1/3]			
Termination RM attribute	0 X 12bit [256]	0 X 12bit [256]	_	-	
Rept/Punc	88bit	20bit			
BER	[0.0]%	[0.0]%			
BLER	[0.0]%	[0.0]%			
					, Return
Data (CH4)	Clock/Trig	PWR CONT		Ref. Clock	, I/Q Input

– BER, BLER

- Generating the error
- 0 to 10 %, 0.1 % resolution

Discover What's Possible™

Slide 68 MG3681A-E-I-1

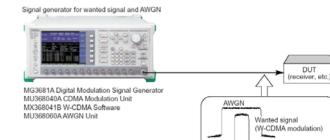

/inritsu

TrCH Edit

Power control function

Operation check of closed loop power control is performable.

- The slot power of each channel is programmable up to 64 slot cycle by editing on display.
 - Editing the slot power for each channel of CH4~12
 - -40 to 0 dB (reference: channel power), 1 dB resolution
- The slot power of each channel is controlled up/down by external control trigger input.
 - Controlling the slot power of specified channel among CH4~12 **»**
 - Up & Down in 1, 2 or 3 dB



Discover What's Possible™

AWGN mixing

Single unit is performable dynamic range test of BS receiver.

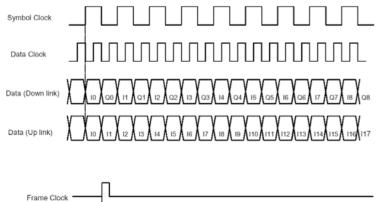
- Mixing AWGN to Uplink wanted signal
 - AWGN: Additive White Gaussian Noise
- High-accuracy and high-stability C/N
 - -30 to -20 dB, 0.2 dB resolution -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution
 -19.9 to -8 dB, 0.1 dB resolution

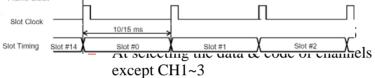
Selecting AWCN handwidth

• 56	electing A v	v GIN Danuwi	latin	
CDMA(2/2)	> 1.5× 3.84	MHz(Chip rate	e) = 5.76	MHz
Craiibting	> 2× 3.84M	IHz(Chip rate)	= 7.68	MHz
→ . CD	1A Scrambling Code Edit			
Program Sc				
			018 00FF	
			000 0000	
Clear	long,1,n xn : 1[00 0	000] Clong,1,n y :	1FF FFFF	
			018 00++	
Pattern Down Load				
So			000 9600	
*	C long,1,n xn : 1[00 00	000] Clong,1,n y :	1FF FFFF 018 00FF	
Q Input				
Tr	igger Delay 🛛 :			
Slid	ata (CH4) Clock/Trig	PWR CUNI Ref	. Clock 170 Input	
MG3681A	-E-I-1			JU.
	DMR(2/2) crambling & Others wer Cont. Program Warning formation Pattern Clear Pattern Down Load etc. Q Input Scient Scie	<pre>> 1.5× 3.84 > 2× 3.84IV > 2× 3.84IV Scrambling Code Generator 1 Scrambling Type : Long C long.1,n xn : 10000 C long.2,n xn : 0 1200 Chip Offset : 100000 Scrambling Type : Long C long.1,n xn : 11000 C long.2,n xn : 0 1200 Chip Offset : 100000 Scrambling Type : Long C long.1,n xn : 110000 C long.2,n xn : 0 1200 Chip Offset : 100000 Scrambling Type : 100000 C long.1,n xn : 110000 C long.1,n xn : 0 1200 Chip Offset : 100000 C long.1,n xn : 0 1200 Chip Offset : 100000 C long.2,n xn : 0 1200 Chip Offset : 100000 Chip Offset : 1000000 Chip Offset : 1000000 Chip Offset : 1000000 Chip Offset : 1000000000 Chip Offset : 100000000000000000000000000000000000</pre>	 Marning formation Pattern Clear Pattern Clear etc. * Input * *<td>orambling 0 others > 2× 3.84MHz(Chip rate) = 7.68 J wer Conti- Program COMA Scrambling Code Edit Scrambling Code Generator 1 Scrambling Type : Long Sorambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n y : 018 00FF Warning Hormation Scrambling Code Generator 2 Scrambling Type : Long Scrambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n y : 018 00FF Pattern Noon Load * 0 Ingut Scrambling Code Generator 3 Scrambling Type : Long J Scrambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.2.n y : 018 00FF @ Input * 10 20040 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * <</td>	orambling 0 others > 2× 3.84MHz(Chip rate) = 7.68 J wer Conti- Program COMA Scrambling Code Edit Scrambling Code Generator 1 Scrambling Type : Long Sorambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n y : 018 00FF Warning Hormation Scrambling Code Generator 2 Scrambling Type : Long Scrambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n y : 018 00FF Pattern Noon Load * 0 Ingut Scrambling Code Generator 3 Scrambling Type : Long J Scrambling Code Period : 000 9600 C long.1.n xn : 1100 00001 C long.2.n y : 018 00FF @ Input * 10 20040 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * 10 00001 C long.2.n y : 018 00FF * <

Auxiliary signal Input

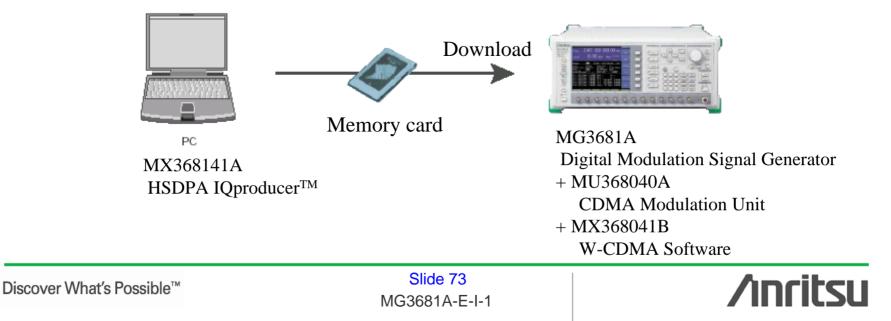
» Front panel


- Data (CH4)
 - Symbol data
- Clock/Trig
 - Synchronization of external frame clock
 - Frame trigger or start trigger is selectable
 - Used at BS receiver test
- PWR CONT
 - Refer to "Power Control Function" on previous pages
- Ref. Clock
 - Synchronization of external baseband reference clock
 - $1\times$, $2\times$, $4\times$ chip rate is selectable
 - Used at start trigger External reference clock input on rear panel (10/13MHz) is also available



Auxiliary signal

- » Rear panel
 - Data (A),(B), Code I/Q (A),(B)
 - Data & code of CH1~12 are selectable
 - Data: The data before spreading(Symbol) or after spreading(Chip) is selectable
 At CH1~3
 - (A) Data & code of P-CCPCH and P-SCH
 - (B) Data & code of P-CCPCH and S-SCH
 - Reference Clock
 - Baseband reference clock
 - $1\times$, $2\times$, $4\times$, $8\times$ chip rate is selectable
 - Symbol Clock, Data Clock


Output

Rear Panel Informatior			
BNC Digital Output	Al:Data Clock A3:Symbol Clock B1:Super Frame Clock B3:Slot Clock	A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B)	
Digital Input/Output	C1:Code I (A) C3:Code I (B)	C2:Code Q (A) C4:Code Q (B)	
AUX 1	D1: D3:	D2:	
	*********	24 & 25 : Ground	
1: 4:DATA 3 (CH6) 7:DATA 6 (CH9) 10:DATA 9 (CH12) 13: 16:	2: 5:DATA 4 (CH7) 8:DATA 7 (CH10) 11: 14: 17:	3:DATA 2 (CH5) 6:DATA 5 (CH8) 9:DATA 8 (CH11) 12: 15: 18:	Return
	rig PWR CONT		I/Q Input
Data (CH4) Clock/Tr	ig PWR CONT		
Data (CH4) Clock/Tr Rear Panel Informatior 3NC	nig PWR CONT	Ref. Clock	
Data (CH4) Clock/Tr Rear Panel Information	rig PWR CONT Al:Data Clock	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock	
Data (CH4) Clock/Tr Rear Panel Informatior 3NC	Al:Data Clock Al:Data Clock AS:Symbol Clock Bl:Super Frame Clock B3:Slot Clock	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B) C2:Code Q (A)	Rear Pane
Data (CH4) Clock/Tr Rear Panel Information SNC Digital Output	Al:Data Clock Al:Data Clock AS:Symbol Clock BI:Super Frame Clock B3:Slot Clock Cl:Code I (A)	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B) C2:Code Q (A)	Rear Pane
Data (CH4) Clock/Tr Rear Panel Information SNC Digital Output Digital Input/Output AUX 1 Deub-25P AUX 2 13 * * *	Al:Data Clock Al:Data Clock A3:Symbol Clock B1:Super Frame Clock B3:Slot Clock C1:Code I (A) C3:Burst Gate (CH4) D1:	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B) C2:Code Q (A) C4:Burst Gate (CH5) D2: 19 - 23 : NC 24 & 25 : Ground	Rear Pane
Data (CH4) Clock/Tr Rear Panel Information SNC Digital Output Digital Input/Output AUX 1 Dsub-25P AUX 2 1: 4:DATA 3 (CH6) 7:DATA 9 (CH12)	fig PWR CONT Al:Data Clock A3:Symbol Clock B1:Super Frame Clock B3:Slot Clock C1:Code I (A) C3:Burst Gate (CH4) D1: D3: ************ ***** 2: 5:DATA 4 (CH7) 8:DATA 7 (CH10) 11:	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B) C2:Code Q (A) C4:Burst Gate (CH5) D2: 19 - 23 : NC 24 & 25 : Ground 3:DATA 2 (CH5) 6:DATA 5 (CH8) 9:DATA 8 (CH11) 12:	Rear Pane
Data (CH4) Clock/Tr Rear Panel Information BNC Digital Output Digital Input/Output AUX 1 Dsub-25P AUX 2 13 * * * G G - 1: 4:DATA 3 (CH6) 7:DATA 6 (CH9)	Al:Data Clock A3:Symbol Clock B1:Super Frame Clock B3:Slot Clock C1:Code I (A) C3:Burst Gate (CH4) D1: D3: **********************************	Ref. Clock A2:Data (A) A4:Reference Clock B2:Frame Clock B4:Data (B) C2:Code Q (A) C4:Burst Gate (CH5) D2: 19 - 23 : NC 24 & 25 : Ground 3:DATA 2 (CH5) 6:DATA 5 (CH8) 9:DATA 8 (CH11)	Rear Panel

Slide 72 MG3681A-E-I-1

MX368141A HSDPA IQproducerTM

- MX368141A HSDPA IQproducerTM is the PC application software that generates 3GPP HSDPA compliant signal patterns outputted from MG3681A Digital Modulation Signal Generator.
- MG3681A Digital Modulation Signal Generator that has MU368040A CDMA MODULATION UNIT and MX368041B W-CDMA Software is required for the use of generated signal patterns.
- Since multiple pattern files that are generated can be downloaded into MG3681A mainframe, users can switch over signal patterns easily by selecting them.

Easy to generate signal patterns with the setting file included

- With the MX368141A HSDPA IQproducerTM, users can generate signal patterns by editing a setting file (csv format) that determines HSDPA-system signal patterns with Excel program and converting the edited setting file.
- With the setting file of standard signal patterns (Fixed Reference Channel*) included in the software, users can generate signal patterns easily only by editing the parameter they wish to change.

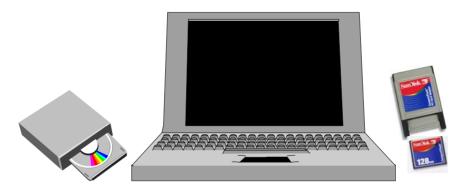
													A HOUTH METO	
													Load setting file form D/NQproducer/H-set1Q.csv	
Microsoft Excel - HSDP	Aparameter sheet	xle												
	X Do B.	1 10 1. 01	Σ /.		1 9 2 10	108 - 2	ΠÆ							
*) ファイル(E) 編集(E) 表												_18 ×1	Convert	Cancel
					the she liter									2 <u></u>
I			■国 97%			0 · 4 ·	and the second						The way when the second contract the second	
A1 💌			hannelss conner	ction set-u	p								sqrt(rmsl^2+rmsQ^2) = 4.340494e+003	
A	B	C	D	E	F	G	H	1	J	K	L.	M	SG RMS = 5.316000e+003	
1 #Downlink Physic				No and the set	and the second second		and and	ta and for the second second	and the second second	and for the second	and Charles Stab			
2 #3GPP TS 25.101		able C.8:Dow	nlink physical cl	hannels for	HSDPA recei	iver testing for	Single Link	performance	terrar participantes	the second s		Contraction of the local data	sqrt(SG_RMS^2+SG_RMS^2) = 7.517959e+003	
3 SIM_LINK	Down				and the second							and the second	Create: D:\/Qproducer/\pich.dat	
4 CPICH	ON		10.1		2 march							and because where the	orodo, D.a aprodocampion. dat	
P-CCPCH PICH	ON ON		10.1 12											
DL-DPCH	ON		10.1 12	7 RMC12.2k	hne									
OCNS	ON		10.1	Pomora an	ops									
9 DL-ScramblingCo		91											Create: D:\IQproducer\\H-set1Q.bt	
10	12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-		Section 2.	The second second		C. Carlos and P.			2.4		and the second	the state of the s	
1 HS-SCCH1	ON		10.1 12	7 Coded	FFFF		1	5 0		0	7	0	Create: D:\/Qproducer/\H-set1Q.dli	
2 HS-SCCH2	OFF		10.1 12	7 Coded	FFFF		6	10 0		0	7	0	oreate. Diveproducerni Poetra di	
3 HS-SCCH3	OFF			7 Coded	FFFF		9	3 0		0	7			
4 HS-SCCH4 5 HS-PDSCH1			10.1 12 10.1 HS-PDSCH	7 Coded	FFFF	0	12	3 0	~~~	0	7	0	Create: D:\/Qproducer\\H-set1Q.cmb	
6 HS-PDSCH2	ON		10.1 HS-PDSCH 10.1 HS-PDSCH		FFFF	Correct	-		800				oreute. Distaproducement over alerna	
7 HS-PDSCH2	OFF		10.1 HS-PDSCH		FFFF	Correct	-		800					
8 HS PDSCH4	OFF		10.1 HS-PDSCH		FFFF	Correct	1	-	800				Convert Finished!	
9 HAROprocess1	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000		
0 HAROprocess2	000000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	3	Þ
1 HAROprocess3	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000		
2 HAROprocess4	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000		
3 FrameCycle	12		-	1				3			1.1		Save file to D:\IQproducer\	
+ > N hsdpa	a firm the second second						14	1					Dave me to Davaproducers	
医形の調整(8)、 2 6	X=1/2=17"0.0	110		3 . J . A	· =	1								
C/F'														
AVI	at a second second	of the local division of the local divisiono	and the second second	States of States of	and the second second	and the second	and the second second	And and the second second	Contraction in the second		Participant and Participant	10000		

MX368141A HSDPA IQproducer[™] setting file edit screen

MX368141A HSDPA IQproducerTM setting file convert screen

/inritsu

Discover What's Possible™


Slide 74 MG3681A-E-I-1

Operating environment

Personal computer

- OS: Windows 2000/XP
- CPU: Pentium 300MHz or faster
- Memory size : ≥128MB
- HDD: Occupation≤200MB
- Display: 800×600 pixels or more
- Peripheral

equipment : It be possible to read CD-R. It be possible to save in Compact-Flash (PC card adapter is required for download to MG3681A)

Slide 75 MG3681A-E-I-1

Comparison of MX368141A HSDPA IQproducer and MX368041A-11 HSDPA signal pattern

The functional difference about HSDPA

Model	MG3681A	MG3681A
- Baseband	- MU368040A	- MU368040A
- Software	- MX368041A/B	- MX368041A/B
- HSDPA application software	- MX368141A	- MX368041A/B-11
Type of software	IQproducer	Signal pattern
	* Change of a parameter is	* Change of a parameter is
	possible.	impossible.
Component test for Down-Link	No	Yes
of HSDPA		(Supports test model 5)
Component test for Up-Link of	Yes	No
HSDPA	(Supports HS-DPCCH)	
Supports HSDPA channels	HS-PDSCH	HS-PDSCH
	HS-SCCH	HS-SCCH
	HS-DPCCH	

MX368141A can change a parameter and supports HS-DPCCH of HSDPA Uplink.

MX368040A-11 support "Test Model 5" of the component test of HSDPA Downlink.

Discover	What's	Possible™
----------	--------	-----------

Slide 76 MG3681A-E-I-1

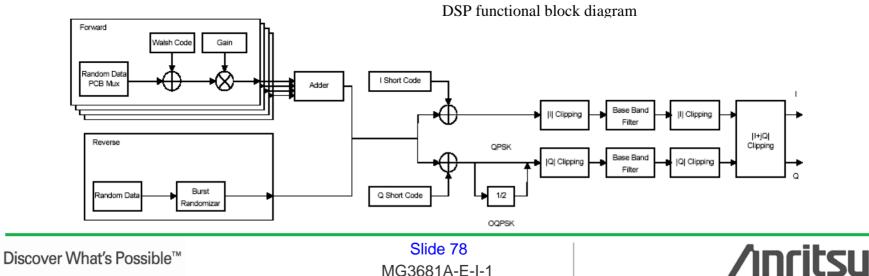
MX368042A IS-95 Device Test Software

- Forward/Reverse cdmaOne test signals for IS-95A/B(3GPP2 C.S0002 RC1 & 2) standard can be outputted by installing the MX368042A IS-95 Device Test Software in the MU368040A CDMA Modulation Unit.
- In R&D/production process of components, base stations (BS) and mobile stations (MS), the functions to support various applications are provided as the signal source for components and the interfering signal source for receiver test.

Freq.	887.650 000 00 MHz	IS-95(1/2)	Freq.	842.650	00 00	MHz
Level	0.00 dBm Mem.—— Reverse	<mark>On</mark> Off OCNS	Level	0.00 dBm		erse
Baseband : [On System : [<mark>IS-9</mark> Filter : [SPEC Pat. Number :	<mark>15</mark>] Link : [Forward] Chip Rate : [1.228 800Mcps] +EQ] α : -	* Code Power	<u>Baseband : [On]</u> System : [<mark>IS-95</mark> Filter : [SPEC] Link : [Reverse] Chip	<u>nt] Pulse Mod. :</u> Rate : [1.228 800	
Walsh Code		Rate Set <mark>1</mark> 2	Traffic, Data Ra	ate : FullRate	Output Level (0.00dBm
-		* Data Rate				* Data Rate
CRP TITTT 0 Traf	T S] `fic, On , -10.3dB, Rate Set 1, FullRate 63	etc. * I/Q Input				etc.
		Slide	- 77			

MG3681A-F-I-1

/inritsu


Discover What's Possible™

Generation of test signal format

- Test Mode 1 & 2 signals in IS-97A/B(3GPP2 C.S0010 RC1 & 2) test specifications can be simply set without setting complicated parameters of IS-95A/B(3GPP2 C.S0002 RC1 & 2).
- **Caution**
 - Channel coding is not supported (FER Frame Error Rate test is not performable)

Channel Type	Number of Channels	Fraction of Power (linear)	Fraction of Power (dB)	Comments
Forward Pilot	1	0.2000	-7.0	Code channel W_0^{128}
Sync	1	0.0471	-13.3	Code channel W ₃₂ ⁶⁴ ; always 1/8 rate
Paging	1	0.1882	-7.3	Code channel W_1^{64} ; full rate only
Traffic	6	0.09412	-10.3	Variable code channel assignments; full rate only

• DSP stores the I/Q mapping data of 98304 chip (4 frames) /4× over sampling in Waveform data Memory according to the parameter set on display.

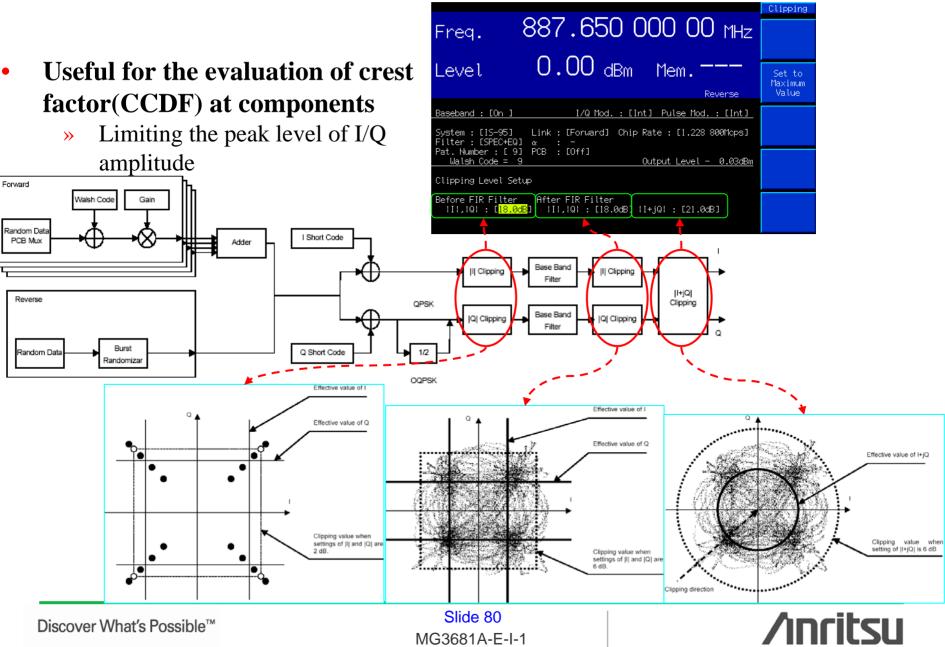
Generation of test signal format

• Simple editing on display

Channel Type	Walsh Code	Function
Pilot	0	Symbol Data is "0".
Sync	32	Symbol Data is Random. Symbol Rate is 4.8 ksps.
Paging	1 to 7	Symbol Data is Random. Symbol Rate is 19.2 ksps.
Traffic	8 to 31, 33 to 63	Symbol Data is Random. Symbol Rate is 19.2 ksps. Settings of Data Rate and Rate Set are enabled. Setting PCB to On allows PCB bit to be inserted

Forward

- » Multiple channels
 - 1 to 64
- » Per Walsh code (0 to 63)
 - On, Off, OCNS
 - Code Domain Power
 - -40 to 0 dB, 0.1 dB resolution
- » Traffic channels
 - Rate set
 - 1 (RC1), 2 (RC2)
 - Data rate
 - Full, Half, Quarter, Eighth
 - 9.6, 4.8, 2.4, 1.2 kbps (Rate set 1) 14.4, 7.2, 3.6, 1.8 kbps (Rate set 2)


Reverse

- Data rate
 - Full, Half, Quarter, Eighth
 - 9.6, 4.8, 2.4, 1.2 kbps (Rate set 1)

Slide 79 MG3681A-E-I-1

		IS-95(1/2)
Freq.	887.650 000 00 MHz	15-95(172)
Level	0.00 dBm Mem.—— Reverse	<mark>On</mark> Off OCNS
<u>Baseband : [On</u> System : [<mark>IS-95</mark> Filter : [SPEC+] I/Q Mod. : [Int] Pulse Mod. : [Int]] Link : [Forward] Chip Rate : [1.228 800Mcps] -EQ] α : -	* Code Power
Pat. Number : [<u>Walsh Code =</u> -	9] PCB : [Off]	Rate Set <mark>1</mark> 2
-		* Data Rate
CRP TITTT 0 Traff	s I Fic, On , -10.3dB, Rate Set 1, FullRate 63	* etc.
		I/Q Input
_		IS-95(1/2)
Freq.	842.650 000 00 MHz	
Freq. Level	842.650 000 00 MHz 0.00 dBm Mem Reverse	
Level	0.00 dBm Mem.—— Reverse	
Level Baseband : [On	0.00 dBm Mem	
Level Baseband : [On System : [15-95	0.00 dBm Mem Reverse 1 [/Q Mod.: [Int] Pulse Mod.: [Int] Link : [Reverse] Chip Rate : [1.228 800Mops]] α : -	
Level Baseband : COn System : C <mark>IS-95</mark> Filter : CSPEC	0.00 dBm Mem Reverse 1 [/Q Mod.: [Int] Pulse Mod.: [Int] Link : [Reverse] Chip Rate : [1.228 800Mops]] α : -	* Data Rate
Level Baseband : COn System : C <mark>IS-95</mark> Filter : CSPEC	0.00 dBm Mem Reverse 1 [/Q Mod.: [Int] Pulse Mod.: [Int] Link : [Reverse] Chip Rate : [1.228 800Mops]] α : -	Data Rate etc.
Level Baseband : COn System : C <mark>IS-95</mark> Filter : CSPEC	0.00 dBm Mem Reverse 1 [/Q Mod.: [Int] Pulse Mod.: [Int] Link : [Reverse] Chip Rate : [1.228 800Mops]] α : -	*

Peak Clipping of test signal

Peak Clipping of test signal

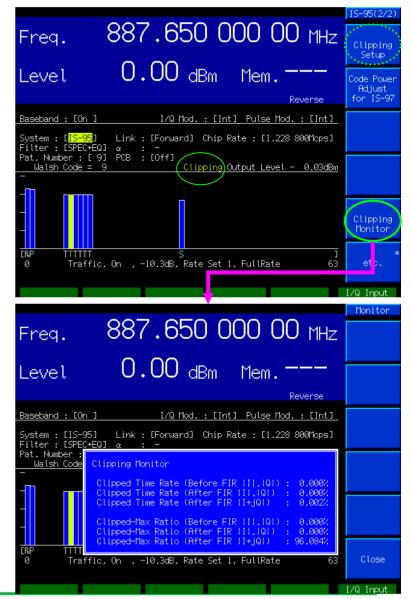
Clipping before FIR filtering

- » ACLR of output signals is not deteriorated because of no distortion caused by clipping.
 - Extreme clipping deteriorates waveform quality.
- » FIR filtering may cause the peak exceeding limited level. Large peak is caused especially at few multiplex number.

• Clipping after FIR filtering

» Clipping causes distortion and deteriorates the ACLR of output signals.

Scalar clipping


- » Limiting I or Q amplitude level
- Vector clipping
 - » Limiting RMS $\sqrt{(I^2+Q^2)}$ level

Peak Clipping Monitor of test signal

- "Clipping" is indicated when vector amplitude is attenuated by Clipping
 - » Selectable "Clipping Monitor"

- Checking Attenuated time and vector amplitude
 - » Clipped Time Rate
 - Percentage of attenuated sampling point
 - » Clipped Max Ratio
 - Attenuation percentage of max. vector amplitude
 - 100% indicates the vector amplitude without attenuation

/inritsu

Slide 82 MG3681A-E-I-1

Auxiliary signal

Output

			Rear Pa
Rear Panel Information	ì		
BNC Digital Output	Al:Reference Clock A3: B1: B3:	A2:Timing Clock A4: B2: B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * 25 G G -	***********	1 19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	Retur
			I/Q Inpu

/inritsu

- » Rear panel
 - Reference Clock
 - Baseband reference clock
 - Chip rate
 - Timing Clock
 - 20ms, 26.7ms, 80ms, 2sec is selectable

MX368011A PDC Software

- Downlink/Uplink PDC test signals (TCH, VOX) for RCR STD-27 standard can be outputted by installing the MX368011A PDC Software in the MU368010A TDMA Modulation Unit.
- In R&D/production process of components, base stations (BS) and mobile stations (MS), the functions to support various applications are provided as the signal source for components, the wanted signal source and the interfering signal source for receiver test.

Freq.	800.000 000 00 MHz	Digital Mod	Freq.	800.000 000 00 MHz	Digital Mod
Level	5.00 dBm Mem. ———	→ Pattern Edit	Level	5.00 dBm Mem	→ Pattern Edit
Baseband System Modulation Filter Slot Rate Burst Pattern Trigger	: [On] I/Q Mod.: [Int] Pulse Mod.: [Int] : [PDC] : π/4 DQPSK Bit Rate : [42.0kbps] : [RNYQ] α=[0.50] Phase Encode : [Normal] : [Fullrate] : [On] : [UP TCH] : [Int]		Baseband System Modulation Filter Slot Rate Burst Pattern Trigger	: [On] I/Q Mod.: [Int] Pulse Mod.: [Int] : [PDC] : π/4 DQPSK Bit Rate : [42.0kbps] : [RNYQ] α=[0.50] Phase Encode : [Normal] : [Halfrate] : [On] : [DN TCH ALL] : [Int]	
 ∆ Data	Slot 0 Slot 1 Slot 2 UP TCH Symbol Clock Burst Gate Burst Trig Data Clock	Full rate	Δ	0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 CHDOWN TCHDOWN TCHDOWN TCHDOWN TCHDOWN TCH A Symbol Clock Burst Gate Burst Trig Data Clock	Half rate

Discover What's Possible™

Slide 84 MG3681A-E-I-1

/incitcu

Emulation of MG3670 series

MG3670 series/MG3660A

- MG0301C π/4DQPSK Modulation Unit
- MG0303B Burst Function Unit

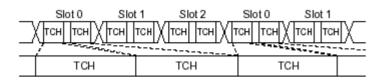
Equal functions

- Display
- Remote control

/inritsu

Slide 85 MG3681A-E-I-1

Real-time generation of test signal format


• Simple editing on display

Support various test cases

- » Full rate/Half rate
- » Slot On/Off
- » Parameter

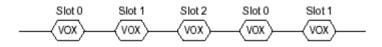
• PRBS data of TCH

- » Continuous in the same slot
- » Phase is shifted per slot
 - When invalid slot is received, PRBS data becomes discontinuous and detectable by BER test

	PatternEdit
Freq. 800.000 000 MHz	→
	Pattern Save/Delete
Level 5.00 dBm Mem	
Level 0.00 ubili Heili.	→ Pattern
Normal System : PDC Pattern : DN TCH ALL	List
Slot Ø Slot 1 Slot 2	
Δ Δ [<mark>Slot 0</mark>] : [DOWN TCH]	
R P TCH SW CC SF SACCH TCH	
4 2 112 20 8 1 21 112	
Scramble : EOn](TCH,SF,SACCH) R : Он Scramble Code : E000]н P : 2н	
ТСН : [PN9] SF: Он SW : [87А4В]н	→
СС : [00]н SACCH : [00000]н	Return
Data Svmbol Clock Burst Gate Burst Trig Data Clock	1/0 Input
	PatternEdit
Freq. 800.000 000 MHz	
Freq. 800.000 000 00 MHz	Pattern Save/Delete
Level 5.00 dBm Mem	bave/Detete
Level 5.00 dBm Mem	
Normal System : PDC Pattern : UP TCH	
Slot Ø Slot 1 Slot 2 Slot 3 Slot 4 Slot 5	
E <mark>slot 0</mark>] : EUP TCH J	
R P TCH SW CC SF SACCH TCH G	
4 2 112 20 8 1 15 112 6	
Scramble : ĹOn](TĆH,SF,SACCH) R : Он Scramble Code : [000]н P : 2н	
ТСН : ЕРN9] SF : Он SW : [785В4]н G : Он	→
СС : [00]н SACCH : [000]н	Return
Data Symbol Clock Burst Gate Burst Trig Data Clock	1/0 Input

Discover What's Possible™

Slide 86 MG3681A-E-I-1

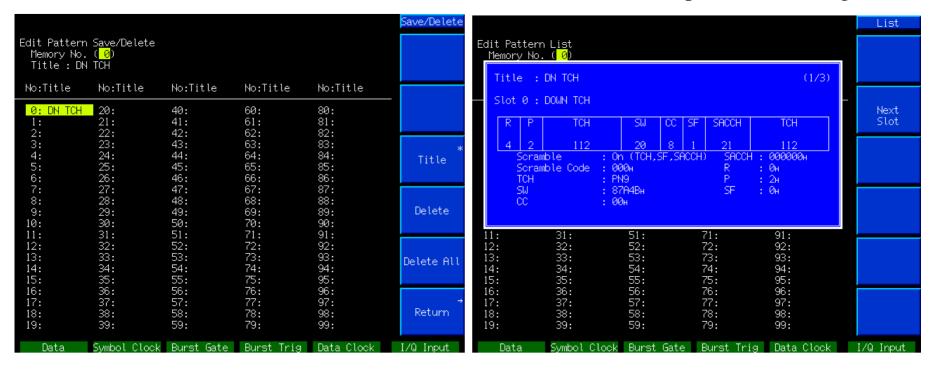

Real-time generation of test signal format

Slide 87

MG3681A-E-I-1

VOX(Voice Operated Transmission)

» Controlling to transmit voice signal in voice period and not to transmit voice signal in voiceless period for power saving of MS.

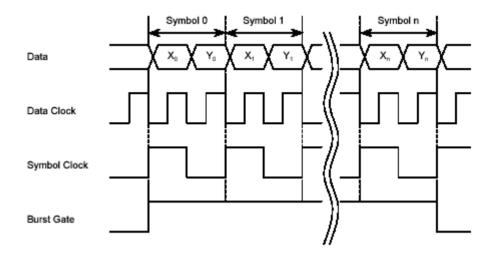

• Interfering signal for receiver test

Freq.	800.000 000 00 MHz
Level	5.00 dBm Mem
System : PDC <u>Slot</u> 0 <u>VOX</u>	Normal Pattern : UP VOX Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 VOX UP TCH UP TCH
[<mark>Slot 0</mark>] : [V0X G 108 Scramble Scramble SW CC SACCH	R P SW CC SF SACCH G 4 6 20 8 1 15 118 : : [On](SF,SACCH) G : 0H
Data Sy	mbol Clock Burst Gate Burst Trig Data Clock I/Q Input
Freq.	800.000 000 00 MHz
Level	5.00 dBm Mem
Baseband	: [On] I/Q Mod.: [Int] Pulse Mod.: [Int]
<u>System</u> Modulation Filter Slot Rate Burst Pattern	: [PDC] : π/4 DQPSK Bit Rate : [42.0kbps] : [RNYQ] α=[0.50] Phase Encode : [Normal] : [Fullrate] : [Off] : [PN15]
Data Sy	mbol Clock Burst Gate Burst Trig Data Clock I/Q Input
	/inritsu

Pattern memory (MU368010A internal memory)

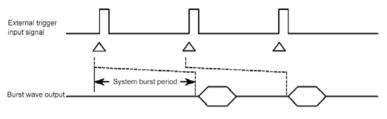
- Parameter settings up to 100 types on Pattern Edit screen can be saved.
- Title up to 8 characters can be inputted for easy confirmation.

» Saved parameter setting window



External data input

π /4DQPSK modulation signal of arbitrary frame format can be outputted by utilizing the pulse pattern generator.

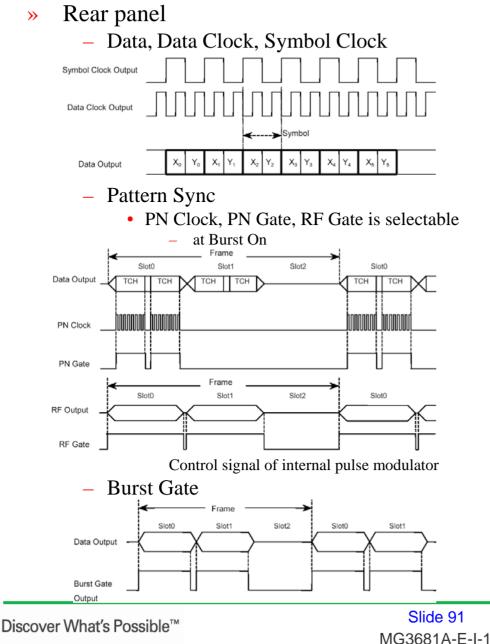

Discover What's Possible™

Slide 89 MG3681A-E-I-1

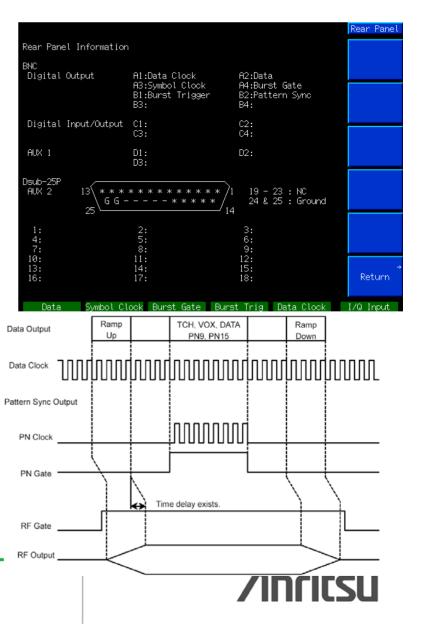
/inritsu

Auxiliary signal Input

- » Front panel
 - Data, Symbol Clock, Burst Gate, Data Clock
 - Refer to "External Data Input" on previous pages
 - Burst Trig
 - Synchronization of external burst trigger
 - Used at BS receiver test



Slide 90 MG3681A-E-I-1


Auxiliary signal

'Ú

Output – Burst Trigger

- Full/Half rate: 20 / 40 ms clock

MX368012A GSM Device Test Software

- Downlink/Uplink GSM test signals (NB ^{Normal Burst}, AB ^{Access Burst}) for 3GPP TS (GSM) 05.01 standard can be outputted by installing the MX368012A GSM Device Test Software in the MU368010A TDMA Modulation Unit.
- In R&D/production process of components, base stations (BS) and mobile stations (MS), the functions to support various applications are provided as the signal source for components and the interfering signal source for receiver test.

Freq. 900.000 000 MHz	Digital Mod	Freq. 900.000 000 00 MHz	ital Mod
Level 5.00 dBm Mem	→ Pattern Edit		→ attern Edit
Baseband : [On] I/Q Mod.: [Int] Pulse Mod.: [Int] System : [35M] Modulation : GMSK Bit Rate : [270.833kbps] Filter : BbT=[0.30] Differential Encode : [On] Phase Polarity : [Normal] Burst : [On] Phase Polarity : [Normal] Pattern : [TCH ALL]		Baseband : [On] I/Q Mod.: [Int] Pulse Mod.: [Int] System : [GSM] Modulation : GMSK Bit Rate : [270.833kbps] Filter : BbT=[0.30] Differential Encode : [On] Phase Polarity : [Normal] Burst : [On] Phase Polarity : [Normal] Pattern : [RACH]] Trigger : [Int]	
Slot0 Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 XNORM XNORM XNORM XNORM XNORM XNORM XNORM XNORM X A A Data Symbol Clock Burst Gate Burst Trig Data Clock	1/0 NB	Slot0 Slot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7 	AB

Discover What's Possible™

Slide 92 MG3681A-E-I-1

Emulation of MG3670 series

MG3670 series/MG3660A

- MG0302A GMSK Modulation Unit
- MG0303B Burst Function Unit


Equal functions

- Display
- Remote control

Additional function

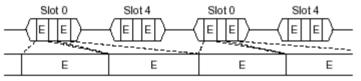
- RACH format
 - » Access Burst

Slide 93 MG3681A-E-I-1

Real-time generation of test signal format

Slide 94

MG3681A-E-I-1


• Simple editing on display

Support various test cases

- » Slot On/Off
- » Slot level
 - -20 to 0 dB, 0.1 dB resolution
- » Differential Encode
 - Differential encoding in 3GPP TS (GSM) 05.04
- » Parameter

• PRBS data of E^(Encrypted bits)

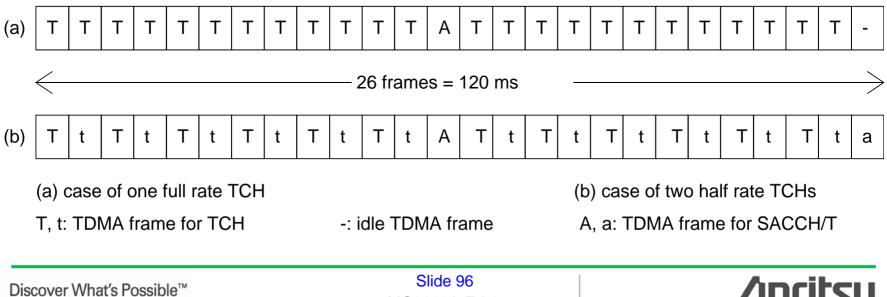
- » Continuous in the same slot
- » Phase is shifted per slot
 - When invalid slot is received, PRBS data becomes discontinuous and detectable by BER test

	PatternEdit
Freq.	900.000 000 00 MHz Pattern *
	Save/Delete
Level	5.00 dBm Mem
System : GSM	Pattern : TCH ALL Normal List
	lot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7
	IORM X NORM X NORM X NORM X NORM X NORM X
 	214 214 214 214 214 214 214 214
T	
3	58 26 58 3 8.25 E : [PN9] T : 04
	ТS : [0970897]н G : FFн
	Return
Data Sv	whol Clock Burst Gate Burst Trig Data Clock I/Q Input
	PatternEdit
Freq.	900.000 000 00 MHz
	Save/Delete
Level	5.00 dBm Mem
System : GSM	Normal Pattern : RACH
<u>Slot0</u> S	lot1 Slot2 Slot3 Slot4 Slot5 Slot6 Slot7
	(
∆ [<mark>Slot 0</mark>] : [RA0	∆
Ta	
8 Ta:[3A	41 36 3 68.25 JH TS : 096FF335478H
E : [PN	Э Т:Он G:FFFFFFFFFFFFFF
	Return
Data Sy	mbol Clock Burst Gate Burst Trig Data Clock I/Q Input
	Anciteu

Real-time generation of test signal format

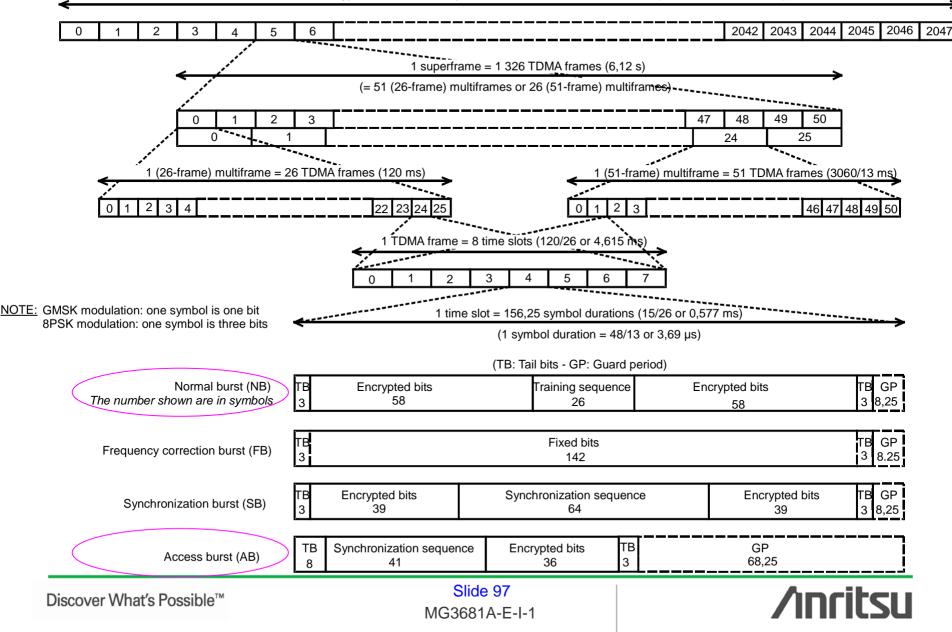
• Interfering signal for receiver test

Freq.	Digital Mod
Level	5.00 dBm Mem. ———
<u>Baseband</u> System Modulation	: [On]]/Q Mod.: [Int] Pulse Mod.: [Int] : [<mark>551</mark>] : GMSK Bit Rate : [270.833kbps]
Filter	: BbT=[0.30] Encode : [On] Phase Polarity : [Normal] : [Off] : [PN15]
Data	Symbol Clock Burst Gate Burst Trig Data Clock I/Q Input



Channel coding of test signal format

Caution


- 3GPP TS (GSM) 05.03 Channel Coding is not supported. >>
 - Traffic Channels (TCH)
 - TCH/FS (Speech channel at full rate)
 - TCH/EFS (Speech channel at enhanced full rate)
 - **Control Channels**
 - SACCH (Slow associated control channel)
 - RACH (Random access channel)
 - Packet Switched Channels
 - PDTCH (Packet data traffic channel)
- Multiframe format is not supported. **>>**

Slide 96 MG3681A-E-I-1

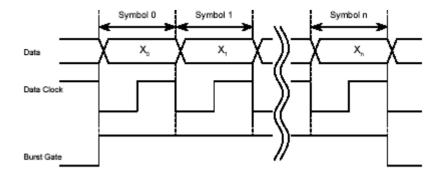
Time slot configuration in 3GPP TS 05.01

1 hyperframe = 2 048 superframes = 2 715 648 TDMA frames (3 h 28 mn 53 s 760 ms)

Pattern memory (MU368010A internal memory)

- Parameter settings up to 100 types on Pattern Edit screen can be saved.
- Title up to 8 characters can be inputted for easy confirmation.

» Saved parameter setting window


Slide 98 MG3681A-E-I-1

External data input

GMSK modulation signal of arbitrary frame format can be outputted by utilizing the pulse pattern generator.

Base Band Setup	
Data Data Clock	: [Ext] : [<mark>Ext</mark>]
Ext Mod Input Data Data Clock Symbol Clock Burst Gate	: [Positive] : [Rise] : [Rise] : [Positive]
Ext Mod Output Data Data Clock Symbol Clock Burst Gate	: [Positive] : [Rise] : [Rise] : [Positive]
Burst Trigger Input Burst Trigger Output Pattern Sync Output	: [Rise] : [Rise] : [PN Clock]

Discover What's Possible™

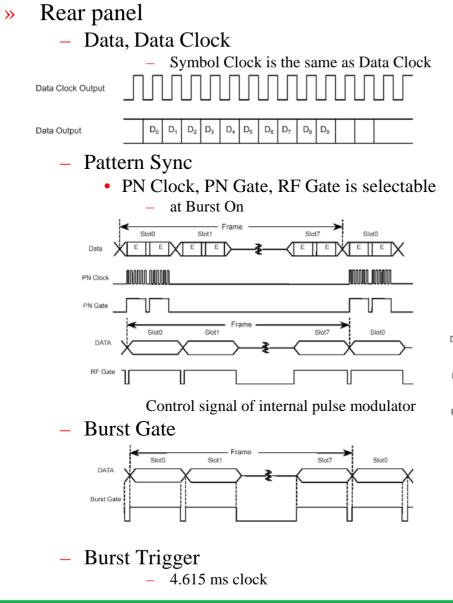

Slide 99 MG3681A-E-I-1

/inritsu

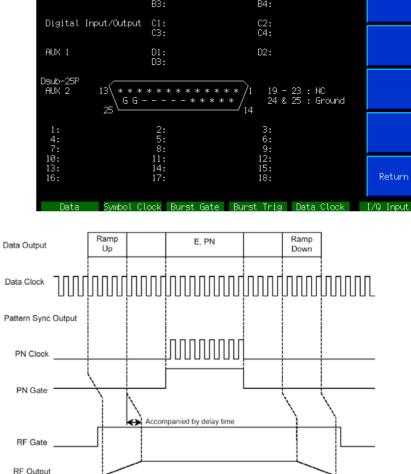
Auxiliary signal Input

» Front panel

- Data, Burst Gate, Data Clock
 - Refer to "External Data Input" on previous pages
- Symbol Clock
 - Same as Data Clock
- Burst Trig
 - Synchronization of external burst trigger



Slide 100 MG3681A-E-I-1



Auxiliary signal

Output Rear Panel Information Digital Output Al:Data Clock A2:Data A3:Svmbol Clock A4:Burst Gate B1:Burst Trigger B2:Pattern Sync B3: B4 : C2: C4:

BNC

/incitsu

Rear Panel

Slide 101 MG3681A-E-I-1

MX368031A Device Test Signal Generation Software

- The test signals for worldwide main communications systems can be outputted by installing the MX368031A Device Test Signal Generation Software in the MU368030A Universal Modulation Unit.
- In production process of components, the function is provided as the signal source for components.
- In production process of CDMA2000 1X BS, the function is provided as the wanted signal source for receiver test.
- In R&D/production process of CDMA2000 1X MS, CDMA2000 1xEV-DO AN Access Network and AT Access Terminal, the function is provided as the interfering signal source for receiver test.

Trigger	Ref. Clock I/Q Input	15:1×EV-	-D0_RVS_9.6k	Ref. Clock I	/Q Input
Baseband Setup Trigger Source : [Int] Trigger Delay : [Reference Clock : [Int]	0]/24sps 0.0000 sps Wave Data Update	Baseband Se 8:1xRT Trigger S 9:1xRT 10:1xRT Reference 11:1xEV 12:1xEV 14:1xEV	rc3(3)_RVS Step rc1-2_FWD Cursor rc3-5_FWD -D0_FWD -D0_RVS -D0_FWD_Idle	ay : [0]/24sps 0.0000 sps	
System : [<mark>DTSG]</mark>] Pattern : [0:GSM_EDGE]		- System : [DTSG Pattern : [<mark>0:GSM_B</mark>			
Baseband : [On] I/Q Mod. : [Int] Pulse	Normal	Baseband : [On]	I/Q Mod. : []	Normal nt] Pulse Mod. : [Int]	
Level 5.00 dBm Mem		Level	5.00 dBm		
Freq. 3000.000 000 0	DO MHz	Freq. 30	00.000 ()00 00 mHz	

Support of test signal format

- Just to select the signal patterns saved in large-capacity waveform memory without setting complicated parameters of communication systems! Simple operation
- High-speed change among TDMA 5 signal patterns and CDMA2000 10 signal patterns <1 sec
 - » TDMA: GSM/EDGE (2), PDC, IS-136, PHS
 - » CDMA2000: CDMA2000 1X (5), 1xEV-DO (4)
- **Quick support** is provided by updating the signal pattern files saved from PC memory card to internal memory.
 - IQ signal pattern file is downloaded to MG3681A via PC memory card (CompactFlash).
 - The I/Q mapping data of over sampling is stored in Waveform data Memory.

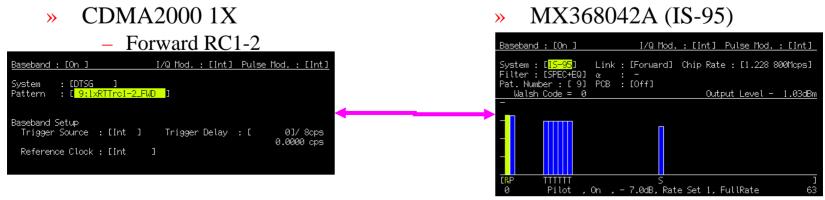
Signal patterns

TDMA	Modulation	Modulation data, Parameter
Frame coding -not supported		
» GSM/EDGE:	8PSK	PN9 cont. modulation, Linearized Gaussian, 270.833ksps
	GMSK	PN9 cont. modulation, Gaussian (Bbt: 0.3), 270.833ksps
» PDC:	π/4DQPSK	PN9 cont. modulation, Root Nyquist (α : 0.5), 21ksps
» NADC(IS-136):	π/4DQPSK	PN9 cont. modulation, Root Nyquist (α : 0.35), 24.3ksps
» PHS:	$\pi/4DQPSK$	PN9 cont. modulation, Root Nyquist (α : 0.5), 192ksps
CDMA2000 1X	-	
» Reverse: Channel co	ding -supported (Utilizabl	le for FER test of BS)
– RC1:	BPSK→OQPSK	Traffic(TCH)
– RC3 (1):	BPSK→HPSK	Fundamental(FCH) + Pilot(PICH)
- RC3(2):	BPSK→HPSK	Fundamental(FCH) + Supplemental(SCH) + Pilot(PICH)
- RC3(3):	BPSK→HPSK	Dedicated Control(DCCH) + Pilot(PICH)
» Forward: Channel co	ding -not supported	
– RC1-2:	BPSK→QPSK	Pilot(PICH) + SYNC + Paging(PCH) + Traffic(TCH)x6
– RC3-5:	BPSK/QPSK→QPSK	Pilot(PICH) + SYNC + Paging(PCH) + Traffic(TCH)x6
CDMA2000 1xEV-DO		
Channel coding -not support	ed	
» Forward:		
 Active Slot: 	BPSK/16QAM→QPSK	Pilot(PICH) + MAC + Data
– Idle Slot:	BPSK→QPSK	Pilot(PICH) + MAC
» Reverse:		Pilot(PICH) + DRC + ACK + Data
		CKChannelGain 3 dB, DataChannelGain 3.75 dB
– 153.6 kbps:	DRCChannelGain 3 dB, AC	CKChannelGain 3 dB, DataChannelGain 18.5 dB
	Frame coding -not supported » GSM/EDGE: » PDC: » NADC(IS-136): » PHS: CDMA2000 1X » Reverse: Channel co – RC1: – RC3 (1): – RC3 (2): – RC3 (2): – RC3 (3): » Forward: Channel co – RC1-2: – RC3-5: CDMA2000 1xEV-DO Channel coding -not support » Forward: – Active Slot: – Idle Slot:	Frame coding -not supported>> GSM/EDGE:8PSK GMSK>> PDC: $\pi/4DQPSK$ >> NADC(IS-136): $\pi/4DQPSK$ >> PHS: $\pi/4DQPSK$ CDMA2000 1X>> Reverse:Channel coding -supported (Utilizable)-RC1:>> Reverse:Channel coding -supported (Utilizable)-RC1:>> Reverse:BPSK->OQPSK-RC3 (1):>> BPSK -> MPSK-RC3 (2):>> BPSK -> HPSK-RC3 (3):>> Forward:Channel coding -not supported-RC1-2:>> BPSK->QPSK-RC3-5:>> BPSK/QPSK -> QPSKCDMA2000 1xEV-DOChannel coding -not supported>> Forward:-Active Slot:>> Forward:-Active Slot:>> BPSK->QPSK>> Reverse:>> BPSK->HPSK-9.6 kbps:>> DRCChannelGain 3 dB, AC

/inritsu

PDC, GSM, PHS Identical signal patterns

MX368031A


Discover What's Possible™

Slide 105 MG3681A-E-I-1

CDMA2000 1X Identical signal patterns

MX368031A

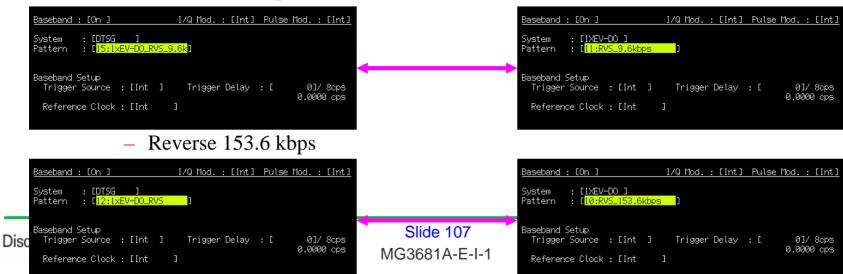
CDMA2000 1xEV-DO MX368031A

- » CDMA2000 1xEV-DO
 - Forward Active Slot

Baseband : [On]	I/Q Mod. : [Int] Pulse Mod. : [Int]
System : [DTSG] Pattern : [<mark>11:1xEV-DO_FWD</mark>	1
Baseband Setup Trigger Source : [[nt]	Trigger Delay : [0]/8cps
Reference Clock : [Int	0.0000 cps]

- Forward Idle Slot

Baseband : [On]	I/Q Mod. : [Int] Pulse Mod. : [In	<u>t]</u>
System : [DTSG] Pattern : [<mark>14:1×EV-DO_FW</mark>	D_Idle]	
Baseband Setup Trigger Source : [Int] Trigger Delay : [0]/8cpx 0.0000 cpx	
Reference Clock : [Int]]	Þ


- Reverse 9.6 kbps

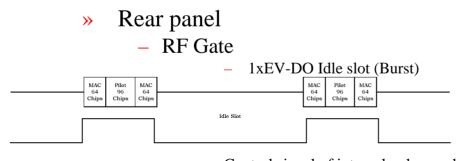
Identical signal patterns

» MX368033A (1xEV-DO)

Baseband : [On]	I/Q Mod. : []	nt] Pulse Mod	. : [Int]
System : [1XEV-D Pattern : [<mark>4:FWD</mark>			
Baseband Setup Trigger Source :	[Int] Trigger Del		
Reference Clock :	[Int]	0.0	0000 cps

Baseband :	[On]		I/	Q Mod.	: [Int]	Pulse	Mod. :	[Int]
	[1XEV [<mark>9:1</mark>	-DO] <mark>xEV-DO_Id</mark>	l_MR×1	ו				
Baseband Se Trigger S		: [Int]	Trigger	Delay	:[8cps
Reference	e Clock	: [Int	ן				0.000	0 cps

Auxiliary signal Input


» Front panel

- Trigger
 - Available at CDMA2000 1X Reverse signal
 - Synchronization of external frame clock
 - Frame trigger or start trigger is selectable
 - Used at BS receiver test
- Ref. Clock
 - Available at CDMA2000 signal
 - Synchronization of external baseband reference clock
 - 8× chip rate (8× 1228.4 kcps = 9830.4 kHz)
 - Used at start trigger
 External reference clock input on rear panel (10/13MHz) is also available

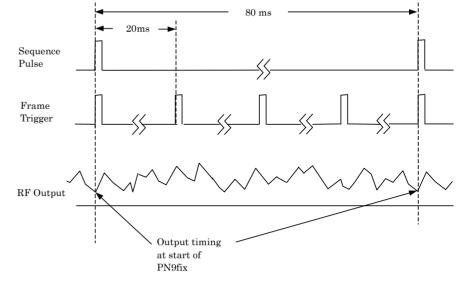
Trigger	Re	ef. Clock	I/Q Input

Auxiliary signal

Control signal of internal pulse modulator

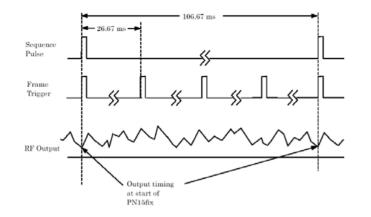
- Sampling Clock
 - Available at CDMA2000 signal
 - Baseband reference clock

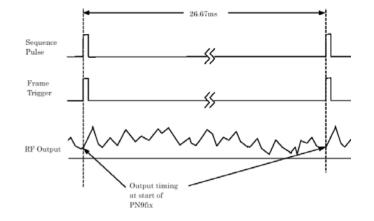
8× chip rate
 (8× 1228.4 kcps = 9830.4 kHz)


Output

			Rear Panel
Rear Panel Information	1		
BNC Disital Output	Ol. DE Cata	A2:	
Digital Output	A1: RF Gate A3: RF Gate B1: Sampling Clock B3:	H2: A4: Frame Trigger B2: Sequence Pulse B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * 6 6 - 25	***************************************	19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	→ Return
Trigge	r	Ref. Clock	I/Q Input

Auxiliary signal




- » Rear panel
 - Frame Trigger, Sequence Pulse
 - CDMA2000 1X


- 1xEV-DO (Active/Idle)

- 1xEV-DO Reverse

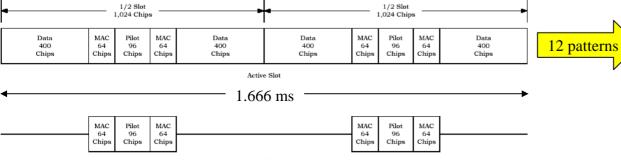
Slide 110 MG3681A-E-I-1

MX368033A CDMA2000 1xEV-DO Signal Generation Software

- Forward/Reverse CDMA2000 1xEV-DO test signals for 3GPP2 C.S0024 standard can be outputted by installing the MX368033A CDMA2000 1xEV-DO Signal Generation Software in the MU368030A Universal Modulation Unit.
- In R&D/production process of components, AN Access Network and AT Access Terminal, the functions to support various applications are provided as the signal source for components and the wanted signal source for receiver test.

Freq. 900.000 000 00 MHz	1XEV-DO	Freq. 900.000 000 00 MHz
Level - 3.00 dBm Mem		Level - 3.00 dBm Mem
Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [<mark>1XEV-D0</mark>]	Wave Data	Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] Suptor
Pattern : [0:FWD_38.4_16_MR] Baseband Setup	Restart	System : [1XEV-D0] Pattern : [0:FWD_38.4_16_MR] IS:RVS_38.4kbps Knob Baseband Se 16:RVS_76.8kbps
Trigger Source : [Int] Trigger Delay : [0]/8cps 0.0000 cps Reference Clock : [Int]	Wave Data Download	Trigger S 17:RVS_153.6kbps Cursor ay : 01/ 8cps 19:RVS_9.6kbps_RT 0.0000 cps 0.0000 cps 0.0000 cps 0.0000 cps Reference 20:RVS_19.2kbps_RT 0.0000 cps 0.0000 cps 0.0000 cps 21:RVS_38.4kbps_RT 22:RVS_76.8kbps_RT 0.0000 cps 0.0000 cps 0.0000 cps
Noise Setup Noise : [Off] Noise Bandwidth : [x2] C/N : [0.0dB] Calculated Bandwidth : 1,230.000kHz Calc Noise Power : Wanted Signal Power :		23:RVS_153.6kbps_RT Noise Setup Noise : [Off] Noise : [Off] Noise : [Off] C/N : [0.0dB] Calculated Bandwidth : 1,230.000kHz Calc Noise Power : Wanted Signal Power :
Trigger Ref. Clock	I/Q Input	Trigger Ref. Clock I/Q Input

Discover What's Possible™


Slide 111 MG3681A-E-I-1

Support of test signal format

- Receiver test (PER ^{Packet Error Rate}) for 3GPP2 C.S0032 (Sector) and C.S0033 (AT) test specifications is performable due to the Coding format (Frame/Slot structuring, CRC addition, turbo coding, interleave) based on 3GPP2 C.S0024.
- Just to select the signal patterns saved in large-capacity waveform memory without setting complicated parameters of 3GPP2! Simple operation
- High-speed change among Forward 13 data rate signal patterns (with Idle Slot) and Reverse 5 data rate signal patterns < 1 sec
- Supporting multi-carrier up to 8×
- **Quick support** is provided by updating the signal pattern files saved from PC memory card to internal memory.
 - IQ signal pattern file is downloaded to MG3681A via PC memory card (CompactFlash).
 - The I/Q mapping data of 8× over sampling is stored in Waveform data Memory.
 - 16× over sampling at multi-carrier

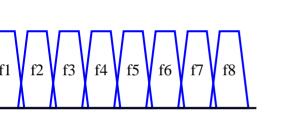
Signal patterns

• Forward (13 patterns)

Idle Slot

• Reverse (10 patterns)

- » for receiver test of Sector
- » for transmitter test of AT


Data Rate (kbps)	9.6	19.2	38.4	76.8	153.6
Reverse Rate Index	1	2	3	4	5
Code Rate	1/4	1/4	1/4	1/4	1/2
Bits per Physical Layer Packet	256	512	1,024	2,048	4,096
Number of Turbo Encoder Input Symbols	250	506	1,018	2,042	4,090
Turbo Encoder Code Rate	1/4	1/4	1/4	1/4	1/2
Encoder Output Block Length (Code Symbols)	1,024	2,048	4,096	8,192	8,192 MG3

	Number of Values per Physical Layer Packet						
Data Rate (kbps)	Slots	Bits	Code Rate	Modulation Type	TDM Chips (Preamble, Pilot, MAC, Data)		
38.4	16	1,024	1/5	QPSK	1,024 3,072 4,096 24,576		
76.8	8	1,024	1/5	QPSK	512 1,536 2,048 12,288		
153.6	4	1,024	1/5	QPSK	256 768 1,024 6,144		
307.2	2	1,024	1/5	QPSK	128 384 512 3,072		
614.4	1	1,024	1/3	QPSK	64 192 256 1,536		
307.2	4	2,048	1/3	QPSK	128 768 1,024 6,272		
614.4	2	2,048	1/3	QPSK	64 384 512 3,136		
1,228.8	1	2,048	1/3	QPSK	64 192 256 1,536		
921.6	2	3,072	1/3	8-PSK	64 384 512 3,136		
1,843.2	1	3,072	1/3	8-PSK	64 192 256 1,536		
1,228.8	2	4,096	1/3	16-QAM	64 384 512 3,136		
2,457.6	1	4,096	1/3	16-QAM	64 192 256 1,536		
			INC	ICSI			

Multi-carrier

Multi-carrier are stored in PC memory card as sample signal patterns.

- Forward Active Slot multi-carrier $(8\times, 4\times, 3\times, 2\times, 1\times)$
- Forward Idle Slot multi-carrier $(8\times, 4\times, 3\times, 2\times, 1\times)$
 - Frequency offset: 1.25 MHz
 - Pilot Channel:
 - PN Offset Index = 0 (f1), 1 (f2), 2 (f3), 3 (f4), 4 (f5), 5 (f6), 6 (f7), 7 (f8)
 - MAC Channel: - MACIndex =

- RABit =
- RPCBit = Frame length:
- Active Slot
- Traffic Channel:
- Data Rate:
- Preamble:
- Modulation:

- RA, 13 RPC Channel 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 4, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 4, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
 - 4, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 (f4) 4, 57, 58, 59, 60, 61, 62, 63, 5, 6, 7, 8, 9, 10 (f5)

(f1)

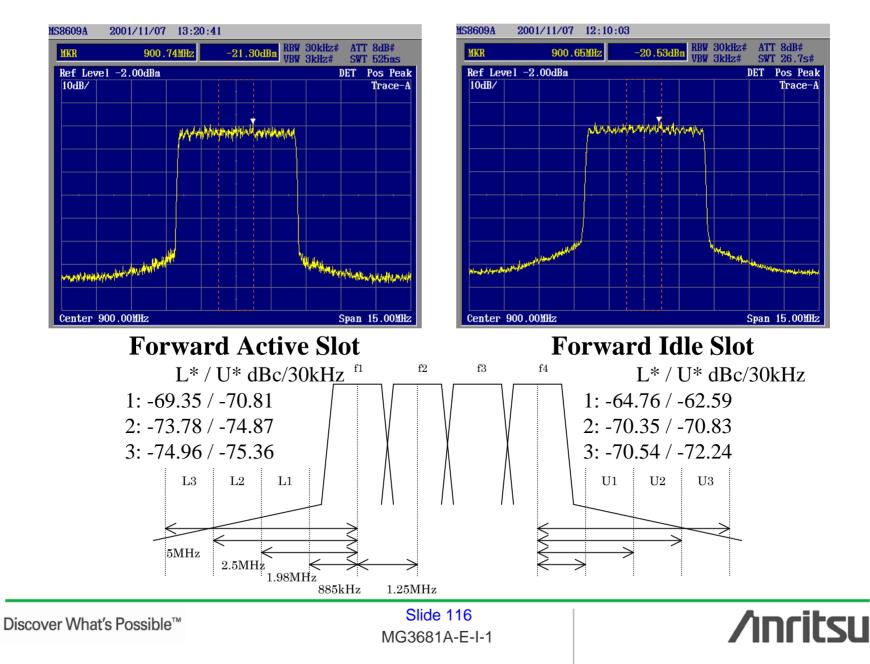
(f2)

(f3)

- 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 (f6)
- 4, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 (f7) 4, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 (f8)
- PRBS
- PRBS

3 frame (Active Slot), 1 frame (Idle Slot)

PN15fix 2457.6 kbps 64 chip

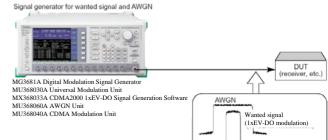

16QAM

<u>Multi-carrier</u> select

	1XEV-D0		~				
Freq. 900.000 000 00 MHz		F	req.	900.0	00 000) 00 MHz	
Level - 3.00 dBm Mem		L	evel -	- 3.00	dBm Me	em. ———	
Reverse						Reverse	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [<mark>1XEV-DO]</mark> Pattern : [0:FWD_38.4_16_MR] UMU33M15.DL1 Step	Wave Data Restart		<u>seband : [Or</u> stem : [1 ttern :_[n] I/G IXEV-DO] <u>1:1×EV-DO_FWD_MR×4</u>]	1 Mod. : [Int] Pu	ulse Mod. : [Int]	
Baseband Setup Trigger Source : [Int] Trigger Delay : [0]/8cps 0.0000 cps			seband Se Trigger S	0:1xEV-D0_FWD_MRx8 1:1xEV-D0_FWD_MRx4 2:1xEV-D0_FWD_MRx3 3:1xEV-D0_FWD_MRx2	Step	[0]/16cps 0.0000 cps	
Reference Clock : [Int] Noise Setup	Wave Data Download			4:FWD_2457.6_1_MR 5:1xEV-D0_Idl_MRx8 6:1xEV-D0_Idl_MRx4 7:1xEV-D0_Idl_MRx3			
Noise : [Off] Noise Bandwidth : [x2] C/N : [0.0dB] Calculated Bandwidth : 1,230.000kHz Calc Noise Power : Wanted Signal Power :						Forward Ac	tive slot
	./Q Input						
Downloading the signal patter	n file fı	rom l	PC me	emory car	d		
8 8 1		_					
Freq. 900.000 000 00	MHz	F	req.	900.0	00 000) 00 MHz	
				~ ~~			

Freq. 300,000 000 00 MHz	
Level - 3.00 dBm Mem	Level - 3.00 dBm Mem
Reverse	Reverse
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [1XEV-D0] Pattern : [11:RVS_9.6kbps 4:FWD.2457.6.1 MR Knob	Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [1XEV-DO] Pattern : <u>[16:1xEV-D0_Idl_MRx4</u>]
Baseband Se 5:1:XEV-D0_Id1_MRX8 Step Trigger S 6:1:XEV-D0_Id1_MRX4 Cursor ay : 01/8cps 7:1:XEV-D0_Id1_MRX3 0.0000 cps 0.0000 cps 0.0000 cps Reference 8:1:XEV-D0_Id1_MRX1 0.0000 cps 0.0000 cps	Baseband Se 2:1xEV-D0_FWD_MRx3 Knob 3:1xEV-D0_FWD_MRx2 Step Trigger S 4:FWD_2457.6_1_MR Curson 5:1xEV-D0_IdL_MRx8 0.0000 cps
Noise Setup	ndix) Reference 6:1xEV-D0_IdL_MRx4 7:1xEV-D0_IdL_MRx3 8:1xEV-D0_IdL_MRx2
iscover What's Possible™ M0	G3681A-E

4 carriers Spurious Emissions (typ.)



AWGN mixing

MG3681A-E-I-1

Single unit is performable dynamic range test of BS receiver.

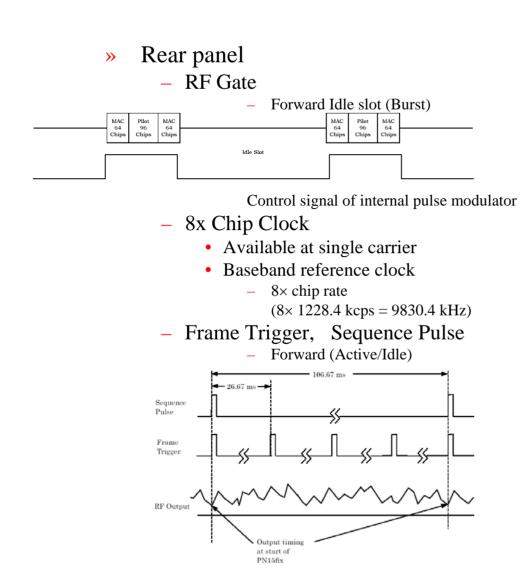
- Mixing AWGN to CDMA2000 wanted signal
- High-accuracy and high-stability C/N
 - \sim -30 ~ -30 dB, 0.1 dB resolution

	1XEV-D0
Freq. 900.000 000 00 MHz	
Level - 59.53 dBm Mem	
Level JO, JO abin Hem. Reverse	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [<mark>1XEV-D0</mark>] Pattern : [23:RVS_153.6kbps_RT]	Wave Data Restart
Baseband Setup Trigger Source : [Int] Trigger Delay : [0]/8cps	
0.0000 cps Reference Clock : [Int]	Wave Data Download
Noise Setup AWGN : [On] C/N : [1.2dB] Wanted: -63.80dBm Noise: -65.00dBm Noise Bandwidth : [CalcBW x2] Calculated Bandwidth : 1.230MHz	
Trigger Ref. Clock	I/Q Input
	Slide 1

Discover What's Possible™

• Selecting AWGN bandwidth

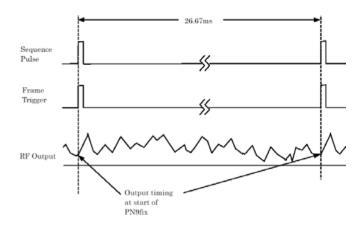
»	2× 1.23MHz =	2.46 MHz
»	3× 1.23MHz =	3.69 MHz
»	$4 \times 1.23 \text{MHz} =$	4.92 MHz


Auxiliary signal Input

» Front panel

- Trigger
 - Synchronization of external frame clock
 - Frame trigger or start trigger is selectable
 - Used at Sector receiver test
- Ref. Clock
 - Available at single carrier
 - Synchronization of external baseband reference clock
 - 8× chip rate (8× 1228.4 kcps = 9830.4 kHz)
 - Used at start trigger
 External reference clock input on rear panel (10/13MHz) is also available

Trigger	Ref.	. Clock I/Q Input


Auxiliary signal

Output

Rear Panel Informatior	ì		Rear Panel
BNC Digital Output	A1: RF Gate (M.P. 4) A3: RF Gate (M.P. 2) B1: 8x Chip Clock B3:	A2: A4:Frame Trigger B2:Sequence Pulse B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * 25 G G -	**********	19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	→ Return
Trigge	r	Ref. Clock	I/Q Input

/inritsu

Discover What's Possible™

Slide 119 MG3681A-E-I-1

MX368133A CDMA2000 1xEV-DO IQproducerTM

- It is Windows application software which upgrades the functioning of MX368033A installed in the MG3681A.
- The IQ mapping data file for signal patterns, which are generated by MU368030A Universal Modulation Unit incorporated in the MG3681A is created.
- In R&D process of components, AN and AT, the functions to perform various evaluation of power amplifier and demodulation test are supported.

Reference setting files for easy setup

• Since the reference setting files for signal patterns of standard MX368033A is recorded, a signal pattern can be created easily only by editing a parameter changing.

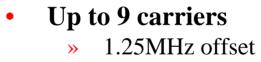
Recall File	? ×	× 26.66ms
ファイルの功場所 ①: 🔄 MX368133A101		\times 1.23 MHz(Chip rate)
	D_Sample_40.prm D_Sample_41.prm	
EVDO Sample 30.prm EVDO Sample 30.prm EVDO Sample 30.prm EVDO Sample 31.prm EVDO Sample 37.prm		MX368133A 1xEV-D0 10producer (V1.00) X Carrier Edit Multicarrier Composition
🖬 EVDO_Sample_32.prm 📓 EVDO_Sample_38.prm		
■ EVDO_Sample_33.prm ■ EVDO_Sample_39.prm		
レー		Common Parameters
ファイルの種類(I): Data Files(*prm)	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
		Carrier 1 Carrier Parameters Copy All Carrier CExecute Default All
		Carrier Parameters (Carrier 1)
Forward Traffic Channel frame (26.66 ms)	Data Rate 12: 2457.6kbps (1slot) TCH 1 5 TCH 2 6 RPC/RA CH Parameters
<u>S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S</u>	12 813 814 815 816	Modulation Type : 16QAM TCH 3 7 TCH 4 8
	⁴ T1 T2 T3 T4	TCH Data PN15
		Por 1 7FFF Por 2 387F
		Offset Index 0 Reg 3 3F80 Reg 4 3C07 Carrier Default
1/2 Slot 1/2 S	ot	
1/2 Slot 1/2	nips	Carrier Calculate
Data MAC Pilot MAC Data Data MAC Pilot 400 64 96 64 400 400 64 96	64 400	
Chips Chips Chips Chips Chips Chips Chips Chips Chips	s Chips Chips	Save & Exit Exit
Active Slot	_	
	PN	N Offset Index
MAC Pilot MAC MAC Pilo 64 96 64 64 96	MAC 64	
Chips Chips Chips Chips Chips		
Idle Slot	Data -	j
	= MAC	
	Slide 121	
Discover What's Possible™		
	MG3681A-E-I-	

Editing of various MAC channels

- Able to edit parameters for each • frame and slot
- Multiplex of RA channels and • **RPC channels**

Kandolii bits	-			T Furnets 1
Carrier 1 RPC/RA CH Parameters			'RA Parameters Copy All Frame 🔦	Execute
× · · · · · · · · · · · · · · · · · · ·	FF FF FF FF FF FF FF FF FF	PC/RA CH Parameters MAC Index 4 RA Bit 0 5-14 15-24 25-34 35-44 MAC Index 15 RPC Bit 0 MAC Index 16 RPC Bit 1 MAC Index 17 RPC Bit 0 MAC Index 18 RPC Bit 0 MAC Index 18 RPC Bit 1 MAC Index 20 RPC Bit 1 MAC Index 21 RPC Bit 1 MAC Index 23 RPC Bit 0 MAC Index 24 RPC Bit 1 MAC Index 24 RPC Bit 1 Group Edit RPC/RA Bit V Norm	CH Power 12.041 dB C ON 45-54 55-63 CH Power 11.420 dB C ON CH Power 11.420 dB C ON	C OFF C OFF C OFF C OFF G OFF G OFF G OFF G OFF G OFF G OFF G OFF
ave & Exit Exit Default Default All		Default Default All	MAC Channel Use	<u> </u>
		0 and 1	Not Used	
		2	Not Used	
		3	Not Used	
		4	RA Channel	
Discover What's Possible™ Slide	122	5-63	Available for RPC Channel and DRCLock Channel Transmissions	ocite
MG3681	A-E-I-1			II ILS

Creating Forward multi-carrier


Able to edit parameters for each carrier

1~9

OK

Discover What's Possible™

MX368133A 1xEV-DO IQproducer (V1.00) X368133A 1xEV-DO IQproducer (V1.00) Carrier Edit | Multicarrier Composition | Carrier Edit Multicarrier Composition Becall the Setting File Save the Setting File -Carrier Select Setting File Waveform Data Files Carrier 1
ON OFF -Common Parameters Waveform Data Name Wave Data Length Over Sampling 16 💌 - 15 Carrier 2
ON OFF I dlw Eile Carrier 3 C ON C OFF O dhu Eile Carrier Parameters Copy All Carrier 🔻 Default All Carrier 1 -Execute Carrier 4 C ON © OFF dli Eile Carrier Parameters (Carrier 1) TCH Parameters MAC Index for Traffic Channel Carrier 5 C ON C OFF dlw File : Waveform Data **BPC/BA CH Parameters** Data Rate 12: 2457.6kbps (1slot) тон 1 Б тон 2 6 Carrier 6 C ON C OFF dli Eile -TCH 4 8 TCH 3 7 Modulation Type 160 AM Pattern Name Carrier 7 C ON @ OFF -Initial Value of PN15 Reg (HEX) TCH Data PN15 -Carrier 8 C ON C OFF Data Adjustment Reg 1 7FFF Reg 2 387F Offset Index Target RMS Range Carrier 9 C ON © OFF Reg 4 3007 Reg 3 3F80 Carrier Default RMS Adjustment Value **CF** : Center Frequency Carrier Calculate Composition Execute Exit Save & Exit calculating the IQ mapping data creating 3 files I data nd Filtering data() (8/9) *** **** Start Filtering dataQ (9/9) ****** Q data nter = 1572864 = 6.377031e+003 Configuration file for End Filtering dataQ (9/9) ******* download

OK

Slide 123

MG3681A-E-I-1

Max

Save & Exit

Exit

Default

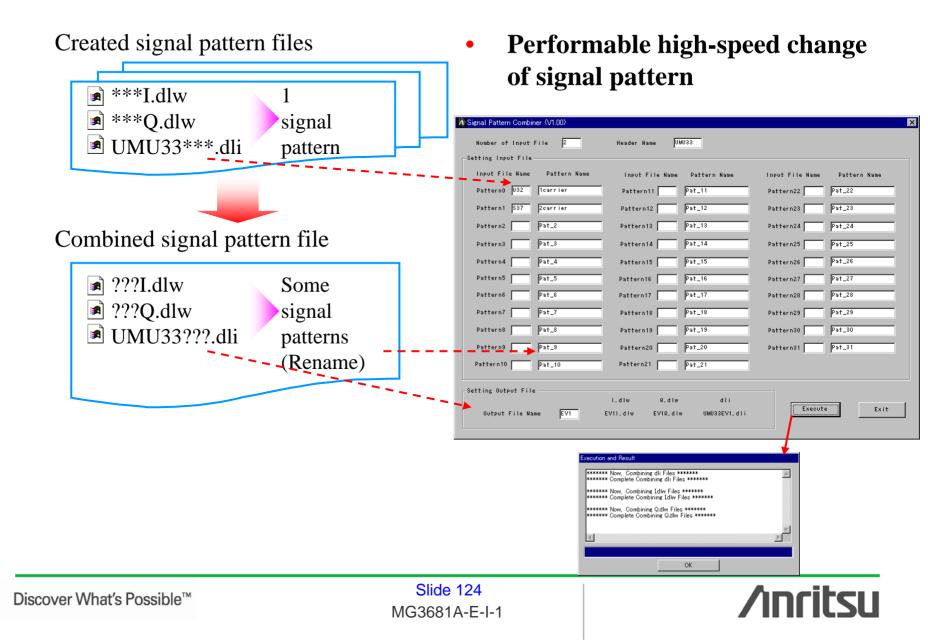
٦

S37

S37Idlm

S37Q.dlw

1xEV-DO FWD MRx2

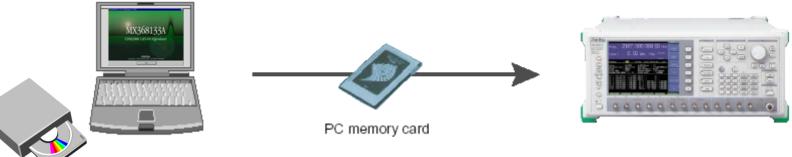

Download Information

Min

0.000

LIMU33S37 di

Signal pattern combiner


Operating requirements

Personal computer

- OS: Windows 2000, XP recommendation
- CPU: \geq 300MHz
- Memory: ≥128MB recommendation
- HDD: $\leq 512MB$ Occupied
- Display: $\geq 800 \times 600$ pixel
- Peripheral equipment:

Reading CD-R

Saving to PC memory card(CompactFrash+PC card adapter)

- Storing I/Q mapping data to Waveform data Memory of MU368030A

/incitsu

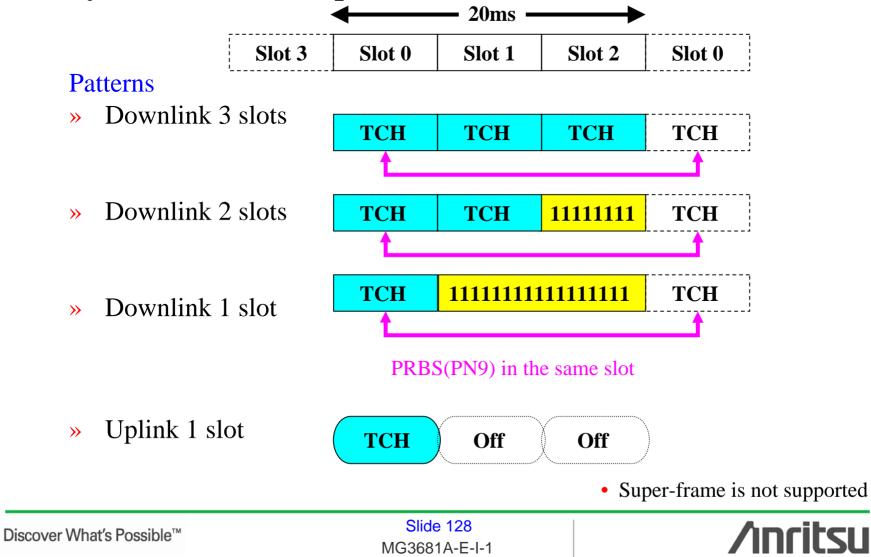
Slide 125 MG3681A-E-I-1

MX368034A PDC Packet Software

- Downlink/Uplink PDC user packet channel (UPCH) test signals for RCR STD-27 standard can be outputted by installing the MX368034A PDC Packet Software in the MU368030A Universal Modulation Unit.
- In R&D/production process of components, base stations (BS) and mobile stations (MS), the functions to support various applications are provided as the signal source for components and the wanted signal source for receiver test.

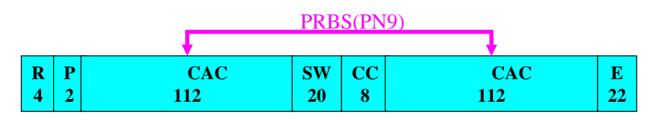
Freq. 800.000 00			.000 000 00 MHz	
	Normal		00 dBm Mem.—— Normal	
- System : [<mark>PDC-P]</mark>] Pattern : [0:DNLINK3]]	Pulse Mod. : [Int] Wave Data Restart	<u>Baseband : [On]</u> System : [<mark>PDC-P]</mark> Pattern : [0:DNLINK3	I/Q Mod. : [Int] Pulse Mod. : [Int] UMU34DN1.DLI Knob UMU34DN2.DLI Step UMU34DN3.DLI Cursor UMU34UP1.DLI	
Baseband Setup Trigger Source : [Int] Trigger Delay Reference Clock : [Int]	: [0]/16sps 0.0000 sps Wave Data Download	Baseband Setup Trigger Source : [Int] Reference Clock : [Int	Trigger Delay : [0]/16sps 0.0000 sps]	
Trigger	Ref. Clock I/Q Input	Trigger	Ref. Clock	1/0 Input-
Discover What's Possible™	Slide	126		

MG3681A-E-I-1


Support of test signal format

- Packet (Downlink up to 28.8 kbps) receiver test (BER) for BS/MS is performable due to the Frame/Slot format based on RCR STD-27.
- Just to select the signal patterns saved in large-capacity waveform memory without setting complicated parameters of RCR STD-27! Simple operation
- Changing among Downlink 3 data rate signal patterns and Uplink 1 data rate signal pattern (approx. 10 min)
- UPCH ⇔ TCH (MX368011A) High-speed change < 10 sec
- **Quick support** is provided by updating the waveform data saved from PC memory card to internal memory.
 - IQ signal pattern file is downloaded to MG3681A via PC memory card (CompactFlash).
 - The I/Q mapping data of 16× over sampling is stored in Waveform data Memory.

Signal patterns frame configuration


• Physical channel for packet communication (UPCH)

Signal patterns slot configuration

• Downlink physical channel for packet communication (UPCH)

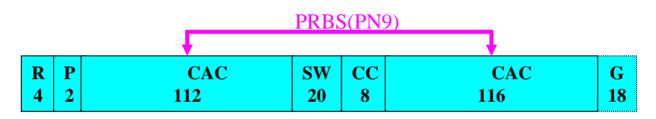
- » 280 bit
 - Scrambling Off

»	R	Guard time for burst transient response	0000
----------	---	---	------

- » P Preamble
- » SW Synchronous word
 - Slot 0: S1(87A4B)
 - Slot 1: S2(9D236)
 - Slot 2: S3(81D75)
- » CC Color code
- » E Collision control bit

0000000

Ancitcu


10

Signal patterns slot configuration

• Uplink physical channel for packet communication (UPCH)

- » 280 bit
 - Scrambling Off

» R Guard time for burst transient response	0000
---	------

- » P Preamble
- » SW Synchronous word
 - Slot 0: S1'(785B4)
- » CC Color code
- » G Guard time

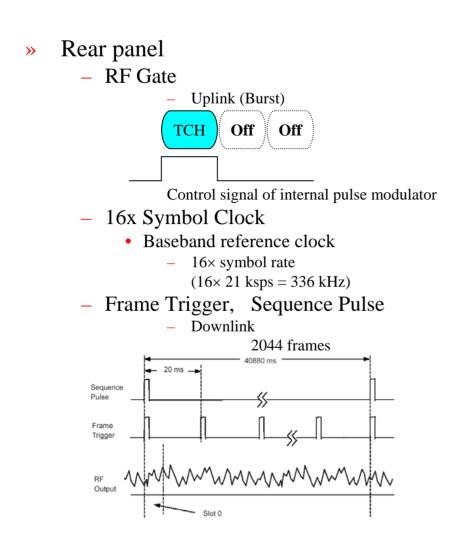
0000000

10

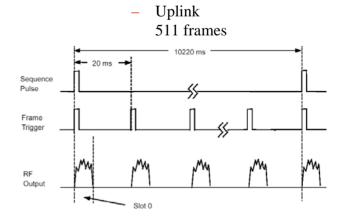
Auxiliary signal Input

» Front panel

- Trigger
 - Synchronization of external frame clock
 - Frame trigger or start trigger is selectable
 - Used at BS receiver test
- Ref. Clock
 - Synchronization of external baseband reference clock
 - $16 \times$ symbol rate (16×21 ksps = 336 kHz)
 - Used at start trigger
 External reference clock input on rear panel (10/13MHz) is also available



Slide 131 MG3681A-E-I-1



Auxiliary signal

Output

Rear Panel Informatior			Rear Panel
BNC Digital Output	Al: RF Gate (M.P. 4) A3: RF Gate (M.P. 2) B1: 16x Symbol Clock B3:	A2: A4:Frame Trigger B2:Sequence Pulse B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * 25	***********/1	19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	, Return
Trigge	r	Ref. Clock	I/Q Input

Discover What's Possible™

Ú

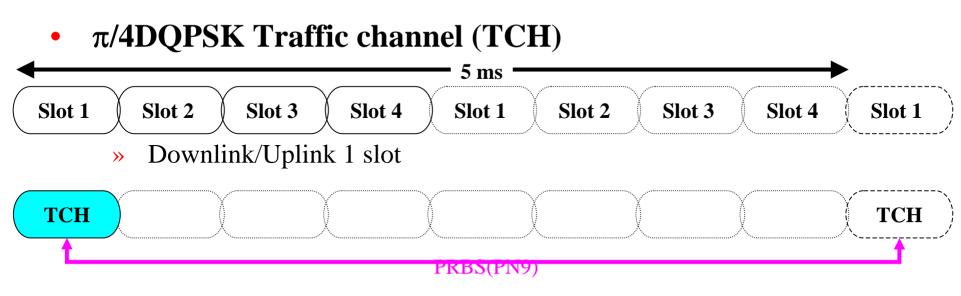
Slide 132 MG3681A-E-I-1

MX368035A PHS Signal Generation Software

888

- Downlink/Uplink PHS test signals (TCH) for RCR STD-28 standard can be outputted by installing the MX368035A PHS Signal Generation Software in the MU368030A Universal Modulation Unit.
- In R&D/production process of components, CS and PS, the functions to support various applications are provided as the signal source for components, the wanted signal source and the interfering signal source for receiver test.

- **Support of test signal format** Receiver test (BER) for CS/PS test specifications is performable due to the $\pi/4DOPSK$ Frame/Slot format based on RCR STD-28 Version 4.0.
- Just to select the signal patterns saved in large-capacity waveform memory without setting complicated parameters of RCR STD-28! **Simple operation**
- **High-speed change the signal patterns** < 1 sec •
- **Continuous modulated signal patterns for Advanced PHS on RCR** • STD-28 Version 4.0 are appended as sample file.


	16QAM	8PSK	QPSK	BPSK	kHzBW	ksps	α
– 1x:	PN9/15	PN9/15	PN9/15	PN9/15	: 288	192	0.5
– 3x:	PN9/15	PN9/15	PN9/15	PN9/15	: 884	640	0.38

- **Quick support** is provided by updating the signal pattern files saved from PC memory card to internal memory.
 - IQ signal pattern file is downloaded to MG3681A via PC memory card (CompactFlash).
 - The I/O mapping data of 20× over sampling is stored in Waveform data Memory.

/incitcu

Signal patterns frame configuration

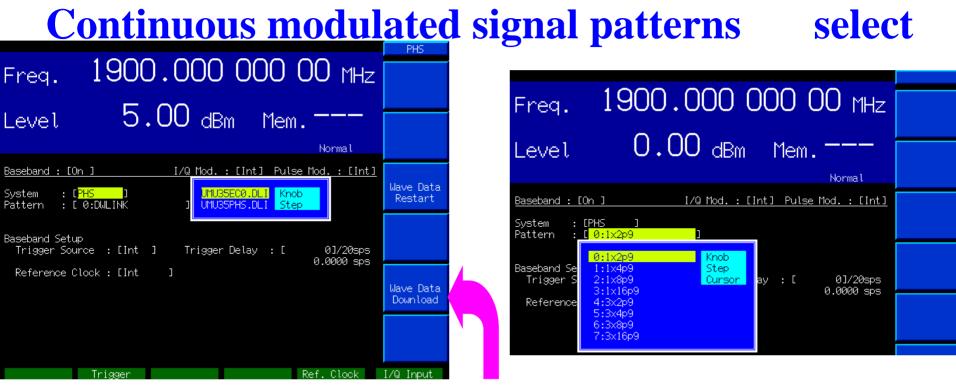
• Super-frame is not supported

- for the wanted signal source for receiver test

π/4DQPSK PN9 continuous modulation

- for the signal source for compornents
- $\pi/4DQPSK$ PN15 continuous modulation
 - for the interfering signal source for receiver test

Slide 135 MG3681A-E-I-1

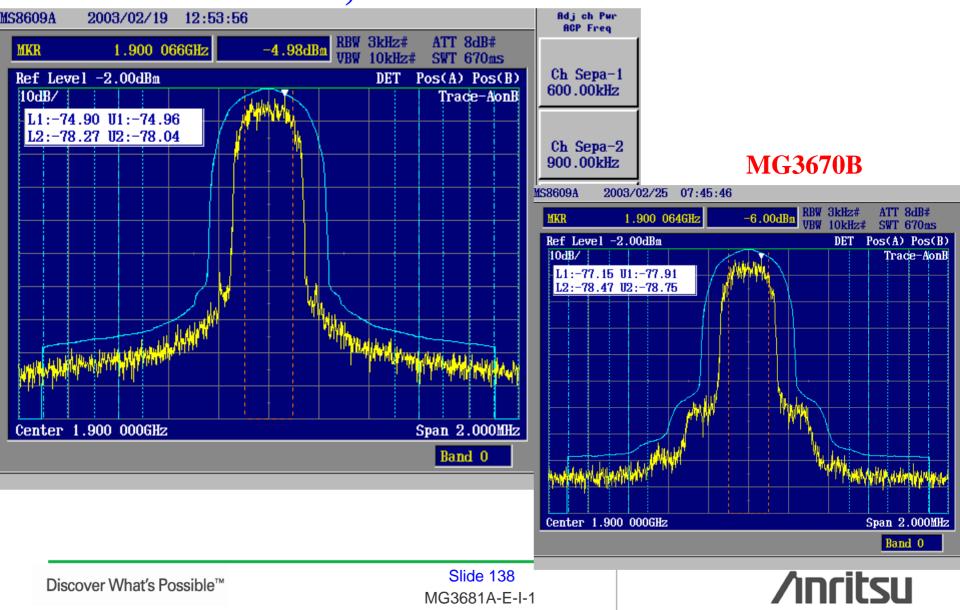

slot configuration

• $\pi/4DQPSK$ Traffic channel (TCH)

- » 240 bit, 625 ms
 - Scrambling Off

						PRBS(PN9)		
R	SS	PR	UW	CI	SA	ТСН	CRC	G
4	2	6	16	4	16	160	16	16

hat's Possible	гм	Slide 136 MG3681A-E-I-1		/inritsu
G	Guard time			
SA	SACCH		All "0"	
CI	Channel identifie	er	0000	(TCH)
– Do	ownlink: 3D4C			
– Up	olink: E149			
UW	Unique word			
PR	Preamble		011001	
SS	Start symbol		10	
R	Ramp time for tr	ansient response		
	SS PR UW – Up – Do CI SA G	SSStart symbolPRPreambleUWUnique word- Uplink:E149- Downlink:3D4CCIChannel identifiedSASACCH	SS Start symbol PR Preamble UW Unique word – Uplink: E149 – Downlink: 3D4C CI Channel identifier SA SACCH G Guard time Slide 136	SS Start symbol 10 PR Preamble 011001 UW Unique word - - Uplink: E149 - - Downlink: 3D4C 0000 SA SACCH All "0" G Guard time Slide 136



Downloading the signal pattern file from PC memory card

Discover What's Possible™

Contrast of typical ACLR ≤ +5 dBm, Continuous modulation

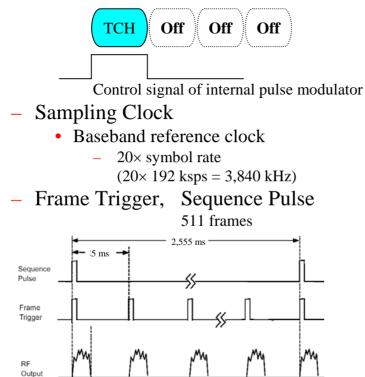


Auxiliary signal Input

» Front panel

- Trigger
 - Synchronization of external frame clock
 - Frame trigger or start trigger is selectable
 - Used at CS receiver test
- Ref. Clock
 - Synchronization of external baseband reference clock
 - $20 \times$ symbol rate (20×192 ksps = 3,840 kHz)
 - Used at start trigger
 External reference clock input on rear panel (10/13MHz) is also available

Trigger		Ref. Clock	I/Q Input



Slide 139 MG3681A-E-I-1

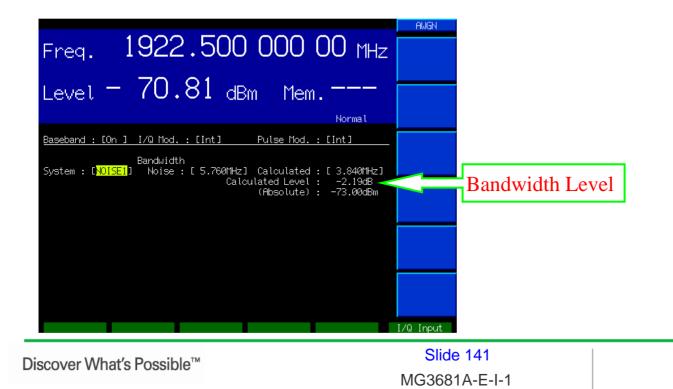
Auxiliary signal Output

- » Rear panel
 - RF Gate

Slot1

Rear Panel Information)		Rear Panel
BNC Digital Output	Al: RF Gate A3: RF Gate B1: Sampling Clock B3:	A2: A4:Frame Trigger B2:Sequence Pulse B4:	
Digital Input/Output	C1: C3:	C2: C4:	
AUX 1	D1: D3:	D2:	
Dsub-25P AUX 2 13 * * * 25 G G -	**********	19 - 23 : NC 24 & 25 : Ground	
1: 4: 7:	2: 5: 8:	3: 6: 9:	
10: 13: 16:	11: 14: 17:	12: 15: 18:	→ Return
Trigge	r	Ref. Clock	I/Q Input

Slide 140 MG3681A-E-I-1



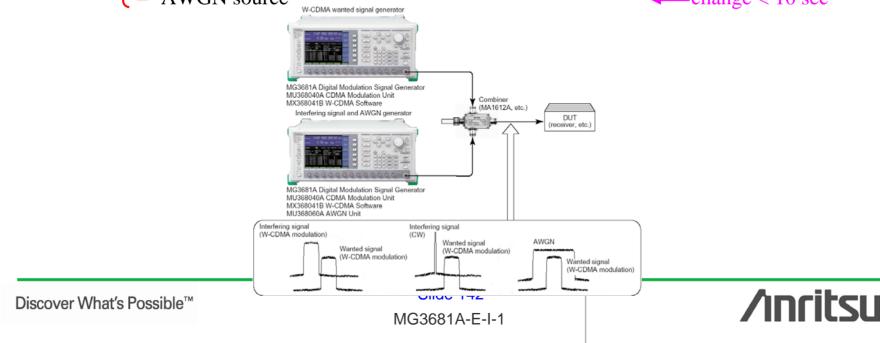
MU368060A AWGN

- AWGN for 3GPP(FDD/TDD) and 3GPP2(CDMA2000) standards can be outputted at real time by installing the MU368060A AWGN Unit in the MG3681A Digital Modulation Signal Generator.
- In R&D/production process of base stations(BS) and user equipment(UE), the function is provided as the AWGN source for receiver test.

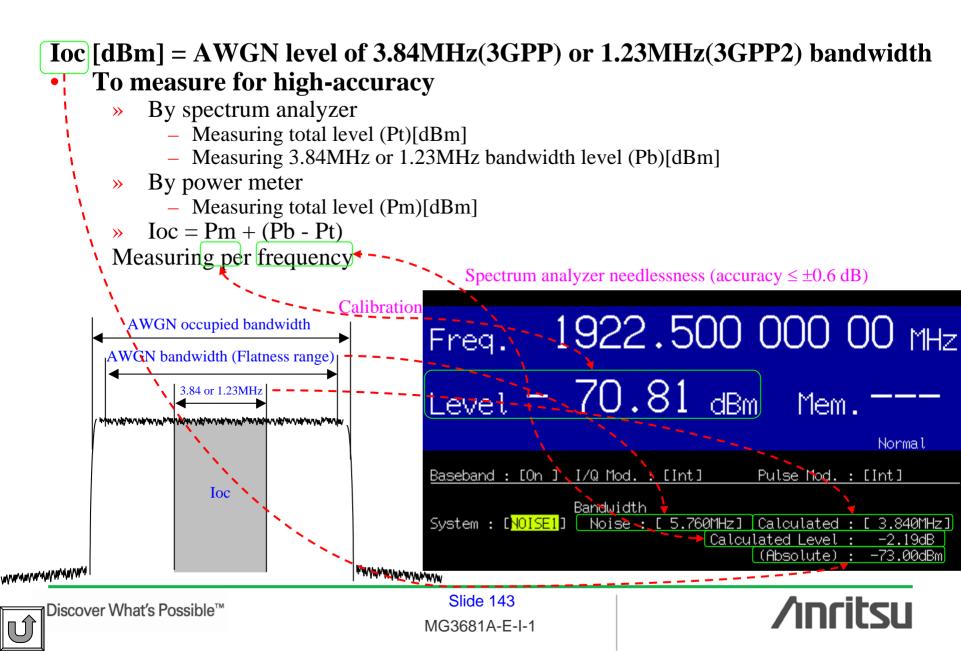
AWGN test support

3GPP(FDD)

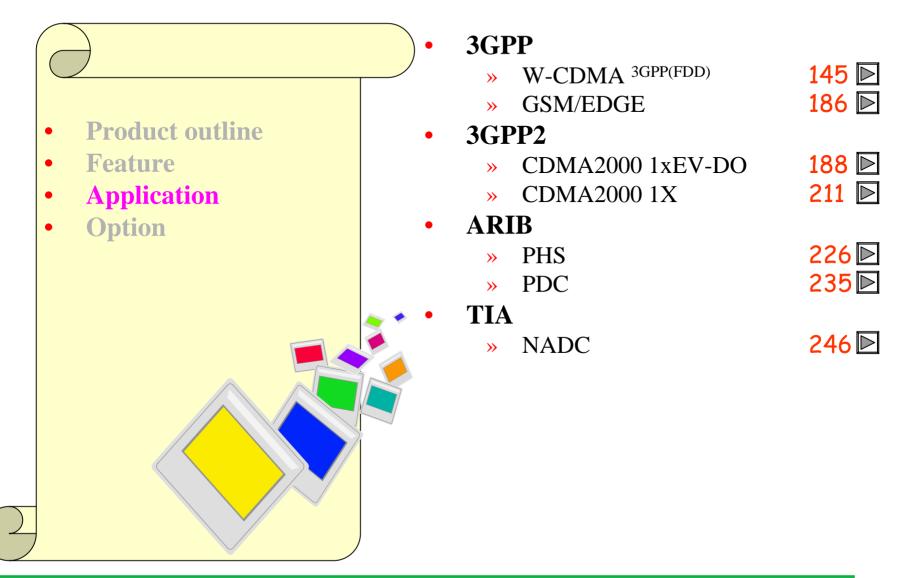
- At mounting MX368041B W-CDMA Software installed in MU368040A >> CDMA Modulation Unit together...
 - Wanted signal source (W-CDMA modulation)
 - Interfering signal source (W-CDMA modulation, CW)
 - AWGN source


change < 10 sec

- **3GPP2(CDMA2000)**
 - At mounting MX368033A CDMA2000 1xEV-DO Signal Generation Software >> installed in MU368030A Universal Modulation Unit together...
 - Wanted signal source (CDMA2000 1xEV-DO modulation)
- Single unit is performable


Single unit is

performable


 Interfering signal source (CDMA2000 modulation, CW) AWGN source change < 10 sec

Ioc bandwidth level

Application

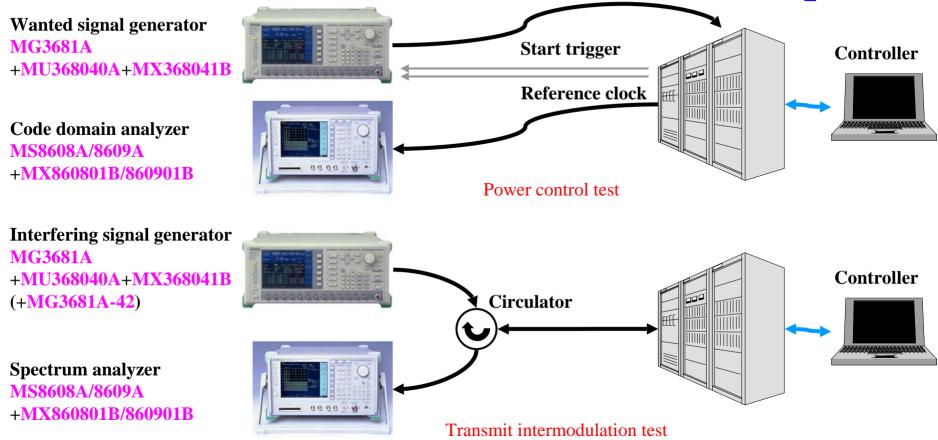
Ú

Slide 144 MG3681A-E-I-1

/inritsu

3GPP TS 25.141 (Release 5) W-CDMA 3GPP(FDD) BS testing

7 Receiver

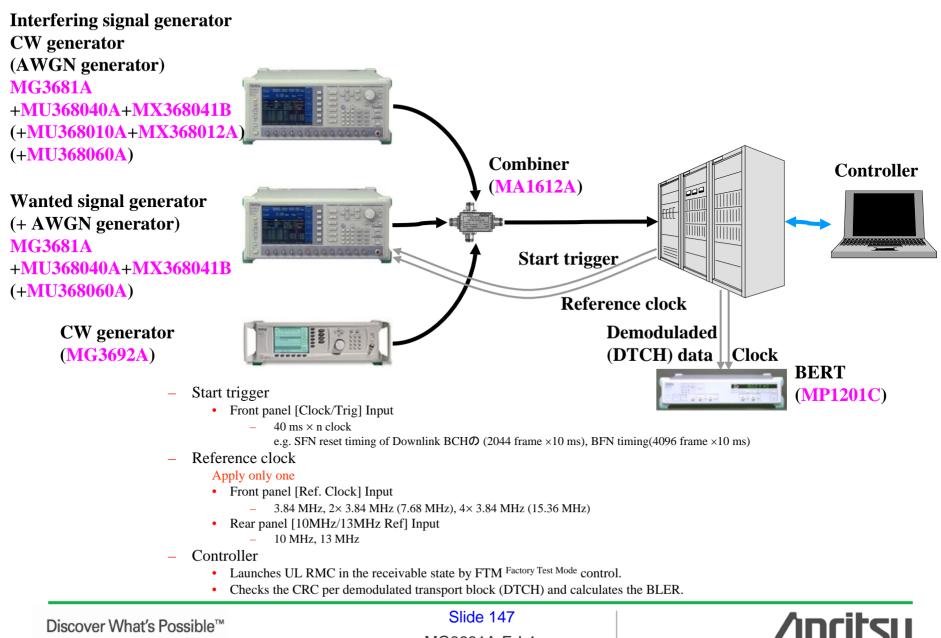

8 Performance requirement

Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
6.4	Output power dynamics	MG3681A				Code
6.4.2	Power control steps	+MU368040A				domain
6.4.3	Power control dynamic range	+MX368041B				analyzer
6.6	Transmit intermodulation		MG3681A +MU368040A +MX368041B (+MG3681A-42)			Spectrum analyzer Circulator
7.2	Reference sensitivity level					
7.3	Dynamic range				+MU368060A	
7.4	Adjacent Channel Selectivity (ACS)		MG3681A +MU368040A +MX368041B			MP1201C BERT
7.5	Blocking characteristics		MG3681A	MG3692A		MA1612A
7.6	Intermodulation characteristics		+MU368040A +MX368041B (+MU368010A) (+MX368012A)	20GHz Or MG3642A 2.08GHz		^{3GHz} Combiner
7.8	Verification of the internal BER calculation					
8.2	Demodulation in static propagation conditions	MG3681A			+MU368060A	
8.3	Demodulation of DCH in multipath fading conditions	+MU368040A			MG3681A	Fading
8.4	Demodulation of DCH in moving propagation conditions	+MX368041B			+MU368060A	simulator
8.5	Demodulation of DCH in birth/death propagation conditions				TNOSOCOUA	Simulator
8.6	Verification of the internal BLER calculation					
8.8	RACH performance					
8.8.1	RACH preamble detection in static propagation conditions					
8.8.2	RACH preamble detection in multipath fading case 3					
8.8.3	Demodulation of RACH message in static propagation conditions				(MG3681A)	(Fading
8.8.4	Demodulation of RACH message in multipath fading case 3				+MU368060A	simulator)
8.9	CPCH performance					
8.9.3	Demodulation of RACH message in static propagation conditions					
8.9.4 8.10	Demodulation of RACH message in multipath fading case 3 Site Selection Diversity Transmission (SSDT) Mode				+MU368060A	
0.10						
D	ISCOVER VVNATS POSSIDIE	e 145 1A-F-I-1			/inrit	5U

MG3681A-E-I-1

Transmitter test

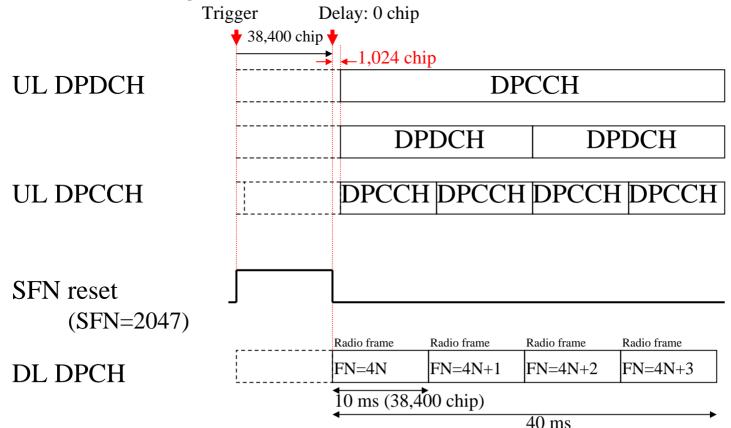
Connection example



- Controller
 - Launches the Inner loop power control in the possible state by FTM Factory Test Mode control.
 - Launches in the transmitting state by FTM Factory Test Mode control.

Slide 146 MG3681A-E-I-1

Receiver test Connection example



MG3681A-E-I-1

Timing synchronization Setup example

• Start trigger delay

» Set the timing to which BS can receive UL RMC

Slide 148 MG3681A-E-I-1

Timing sync. Setup example

		в	Baseband Setup	Baseband
			Input Port Setup Frame Clock/Trigger Source : [Ext]	
•	Setting External Start trigge		Frame Clock/Trigger Select : [<mark>Trigger</mark>] Frame Clock Period Correction : [Off]	
•			Reference Clock Source :[Int] Reference Clock / Chip Clock :[1]	
	 Captures/ Synchronizes the 		Input Polarity Frame Clock : [Rise]	
	Trigger only once		Data Input : [Positive] External Power Control : [Positive] Output Port Setup	
•	Reference clock:		Data Channel Assign : [1] Data Output Type : [Symbol] Data Phase : [π/4] Reference Clock : [Chip Clock X2]	
	» [Ref. Clock] Input applicable c	ase	Output Polarity Data Output (A)&(B) : [Positive] Data Clock : [Rise]	
	– Reference Clock Source : [Ex	t]	Symbol Clock : [Rise] Slot Clock : [Rise]	
	 Reference Clock / Chip Clock 	K:	Frame Clock : [Rise] Code Output I/Q (A)&(B) : [Negative]	
	• [1] at 3.84 MHz		Peak Clipping : [Off]	÷
	• [2] at 2× 3.84 MHz		Max. Peak Power / RMS Power : [20.0dB]	Return
	• [4] at 4× 3.84 MHz		Data (CH4) Clock/Trig PWR CONT Ref. Clock	I/Q Input
	» [10MHz/13MHz Ref] Input	c	2DMA Scrambling Code Edit	S.C.&Others
	applicable case		Scrambling Code Generator 1	
	– Reference Clock Source : [Int		Sorambling Type : Long Sorambling Code Period : 000 9600 C long,l.n xn : 1[00 0000] C long,l.n y : 1FF FFF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF Chip Offset : [0 0000]	
•	Start trigger delay	s	Scrambling Code Generator 2 Scrambling Type : Long Scrambling Code Period : 000 9600 Clong.l.n xn : 1100 0000] Clong.l.n y : IFF FFF	
	» -38,353.5 ~ +65,536 chip		C long.2,n xn : 0 12 0040 C long.2,n y : 018 00FF Chip Offset : [0 0000]	
	1/2 chip resolution		Scrambling Code Generator 3	Trigger Reset
	1/2 cmp resolutio		Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long,1,n x : 1100 0000] C long,1,n y : 1FF FFFF C tong,2,n x : 0 12 0040 C long,2,n y : 018 00FF Chip Offset : [0 0000] Short Code Number :	
•	Trigger recapture/		:∕Q Phase : [0RAD]	
		~ T	rigger Delay :[<u>1024.0Chip</u>] Hoise Bandwidth :[Chiprate X2]	Return
	synchronization		Data (CH4) Clock/Trig PWR CONT Ref. Clock	I/Q Input
Disc	over What′s Possible™	Slide 149	Ancite	
2100		MG3681A-E-I-1		JU

Scrambling code sync.

Setup example

• Long scrambling code

- » 38,400 chip (10 ms) length
 - Created from two (x_n, y) binary m-sequences of 25 bit length
- » Applies HPSK modulation at spreading
 - HPSK: QPSK modulation and $\pi/2$ BPSK modulation alternate per chip timing.
 - Crest factor is lowered without shifting the phase by 180°.

• Set $x_n(23) \sim x_n(0)$ receivable by BS in hexadecimal

» $C_{long,2,n}$ shifts $C_{long,1,n}$ by 16,777,232 chip

Short scrambling code

- To mitigate the reception processing of BS when applying interference canceler
- » 256 chip length

Freq.

Level

Baseband

Filter

Filter Mode

Simulation Link

Maximum Code Number · D

: [Off] Power

CDMA(1/2)

Channel 1-3

Channel

4-8

Channel

9-12 & Add

Even Level

1922.500 000 00 MHz

W-CDMA Phase

Chip Rate

Output Level

Ch. 5

Mem.

I/Q Mod. : [Int] Pulse Mod. : [Int]

Pattern Select : [18] ULRMC12k

Roll Off Ratio : [0.22]

Normal

: [1] : [3.840 000Mcps]

[Off] Power : [-40.0dB]

Pouer

40.0dB

0.00 dBm

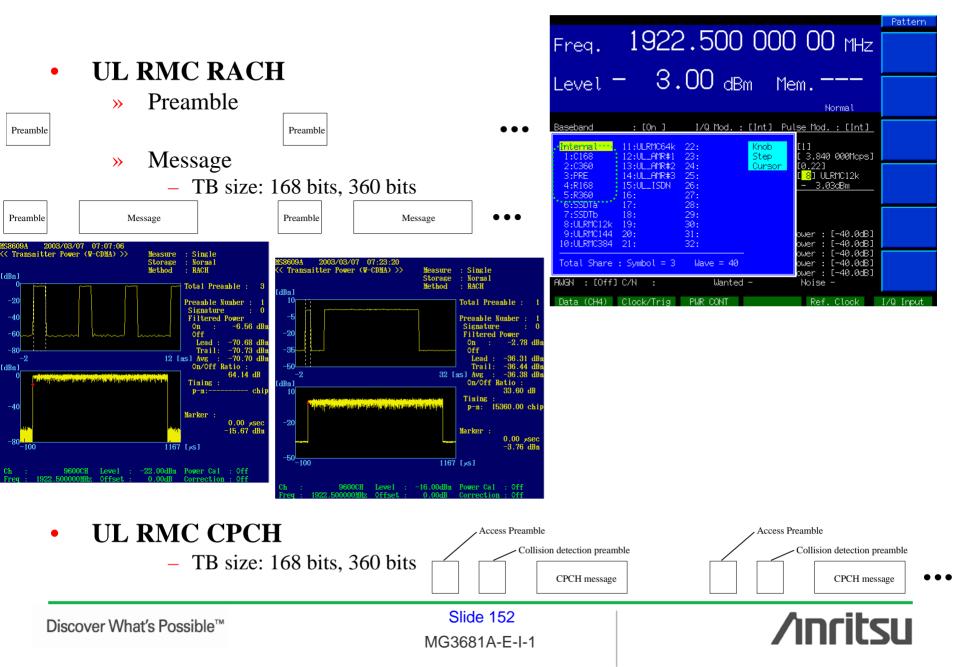
: [On]

: FRNYG

: [EVM]

: [On] Power : [- 4.6dB] : [Off] Power :

I-CDMA


21

[Up Link

- UL RMC 12.2 kbps
- UL RMC 64 kbps •
- UL RMC 144 kbps
- UL RMC 384 kbps

Generating the error 1% in DTCH

 Verification of the internal BER/BLER calculation test 	Ch.10 : [Of Ch.12 : [Of AWGN : [Of	f]Power: L-40.0dB] Ch.9: LUff]Power: L-40.0dB] f]Power: L-40.0dB] Ch.11: [Off]Power: L-40.0dB] f]Power: L-40.0dB] Add Ch: Off Power: L-40.0dB] f]C/N: Wanted - Noise - Clock/Trig PWR CONT Ref. Clock I/Q Input
Transport Channel : DCH SF 64 Slot Format : #2 TrCH No. [2] TrCH1 TrCH2 TrCH3 TrCH4	Apply Freq.	1922.500 000 00 MHz
Data [PN9] [PN9] - - TTI [20]ms [40]ms - - Max.TrBk Size - - - - TrBk Size [244]bit [100]bit - - TrBk Size [244]bit [100]bit - - TrBk Set No. TrBk X [1] TrBk X [1] - - CRC [16]bit [12]bit - - Tail 1 X 8bit 1 X 8bit - - Coder [CC.1/3] [CC.1/3] - - Termination 0 X 12bit 0 X 12bit - - Rtpt/Punct 28bit 20bit - - BER [1.0]1/. [0.0]2/. - - BLER [1.0]2/. [0.0]2/. - -	Baseband Internal 1:C168 2:C360 3:PRE 4:R168 5:R360 6:SSDTa .7:SSDTb. 8:ULRMC12 9:ULRMC14 10:ULRMC38	k 19: 30: 4:20: 31: ower:[-40.0dB] 4:21: 32: ower:[-40.0dB]
Data (CH4) Clock/Trig PWR CONT Ref. Clock	Return AWGN : [Of	e : Symbol = 3 Wave = 40 f]C/N : Wanted - Noise - Clock/Trig PWR CONT Ref. Clock I/Q Input
Discover What's Possible™	Slide 151 MG3681A-E-I-1	/inritsu

• UL RMC 12.2 kbps

- » SSDT test
 - Cell ID transmitted by UE: A, B

		Pattern
Freq. 192	2.500 000 C)O MHz
	00	
_{Level} – 3	.00 dBm Mem.	
		Normal
Baseband : [On]	I/Q Mod. : [Int] Pulse M	od. : [Int]
Internal 11:ULRMC641 1:C168 12:UL_AMR#:		840 000Mcps]
2:C360 13:UL_AMR#2 3:PRE 14:UL_AMR#3	3 25:	ULRMC12k
4:R168 15:UL_ISDN 5:R360 16: 6:SSDTa 17:	26: 27: 28:	<u>3.03dBm</u>
0:5501a 17: 7:SSDTb 18: ***8:ULRMC12k 19:	20: 29: 30:	
9:ULRMC144 20: 10:ULRMC384 21:		: [-40.0dB] : [-40.0dB]
Total Share : Symbol = 3	3 Wave = 40 ower	: [-40.0dB] : [-40.0dB]
AWGN : [Off] C/N :		: [-40.0dB] se -
Data (CH4) Clock/Trig	PWR CONT R	ef. Clock I/Q Input



Slide 153 MG3681A-E-I-1

- Set TPC command for Inner loop power control
 - » 60 TPC command (60 slots) cycle
 - Power control steps test Transmitter power control step tolerance
 - [555 5555 5555 5555] _H
 0101 0101 ... 0101
 - Transmitter aggregated power control step range
 - [003 FF00 3FF0 03FF] _H
 0000 0000 0011 1111 1111
 0000 ... 1111
 - Power control dynamic range

test

• [000 0000 3FFF FFFF] _H 0000 ... 0011 ... 1111 (0^{30bits}1^{30bits})

Interfering signal generator

Setup example

• W-CDMA

- » UL RMC 64 kbps
- Set the scrambling code different from wanted signal
 - [00 0010]
 - in case of Wanted signal: [00 0000]

» ACP priority filter

1 2	
Freq. 1922.500 000 00 MHz	CDMA(1/2 Channel 1-3
Level = 52.00 dBm Mem	Channe1 4-8
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Up Link] Chip Rate : [3.840 000Mcps]	Channei 9-12 & Ac
Filter : [RHY0] Roll Off Ratio : [0.22] Filter Mode : [ACP] Pattern Select : [0] Internal Maximum Code Number : [1] Output Level - 52.00dBm	Cal
Ch. 1 : [On] Power : [-0.0dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] Ch. 4 : [Off] Power : [-40.0dB] Ch. 4 : [Off] Power : [-40.0dB] Ch. 6 : [Off] Power : [-40.0dB] Ch. 7 : [Off] Power : [-40.0dB]	Even Lev
Ch. 8 : [Off] Power : [-40.0dB] Ch. 9 : [Off] Power : [-40.0dB] Ch.10 : [Off] Power : [-40.0dB] Ch.11 : [Off] Power : [-40.0dB] Ch.12 : [Off] Power : [-40.0dB] Add Ch : Off Power : [-40.0dB] AWGN : [Off] C/N : [-20.0dB] Wanted - Noise -	etc.
Data (CH4) Clock/Trig PWR CONT Ref. Clock	I/Q Input

Freq. 1922.500 000 00 MHz Level - 3.00 dBm Normal Normal Reseband : 0n l 100 Hod. : (Int] Putse Hod. : (Int] Internal 11 (LIRHOSH 22; Krob 2:0590 13: (LIPPRE 24: Krob 3:0308m 0wer : [-40.048] 0wer : [-40.048] 0wer : [-40.048]		1000					Pattern
Normal Easeband : [On] L/0 Mod. : [Int] Puise Mod. : [Int] Internet 11:ULRM064k 22: Step Step 2:0360 13:UL_PMR41 23: Step 0:ursor [1] [1] : 3:440 000Hops] [0:22] 2:0360 13:UL_PMR42 24: Step 0:ursor [1] [0:22] [1] [1] : 3:440 000Hops] [0:22] [1] [1] : 3:440 000Hops] [0:22] 3:R5800 16: .22:						MHz	
Normal Easeband : [On] L/0 Mod. : [Int] Puise Mod. : [Int] Internet 11:ULRM064k 22: Step Step 2:0360 13:UL_PMR41 23: Step 0:ursor [1] [1] : 3:440 000Hops] [0:22] 2:0360 13:UL_PMR42 24: Step 0:ursor [1] [0:22] [1] [1] : 3:440 000Hops] [0:22] [1] [1] : 3:440 000Hops] [0:22] 3:R5800 16: .22:	Level =	3.	00 dB	m Mer	n. ——		
Internel 11:ULRIOS4k 22: Krob [1] 1:0168 12:UL_PITR1 23: Step [0,22] 2:0360 13:UL_PITR1 23: Cursor 3:FRE 14:UL_PITR1 25: [0,22] 4:R168 15:UL_ISON 26: 30:000 5:F2800 16: 27: 0 6:SDTa 17: 28: 7:SDTb 18: 29: 9:ULRMC144 20: 31: 0xer : [-40,0dB]	20000		00 GD			al	
1:Cl68 12:UL_HTMR#1 23: Step I: 3.840 @00ftcps] 2:CG80 13:UL_HTMR#2 25: 0ursor 3:PRE 14:UL_HTMR#3 25: 0ursor 4:PL68 15:UL_HTMR#3 25: 0ursor 5:F8360 16: 27: 6:SSDTa 17: 28: 7:SSDTb 18: 29: 8:ULPRC12k 19: 30: 9:ULPRC12k 19: 30: 9:ULPRC12k 29: 31: 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB] 0uer : [-40.0dB]	Baseband	: [On]	I/Q Mod. :	[Int] Puls	e Mod. :	<u>[Int]</u>	
Total Share : Symbol = 3Wave = 40Ouer : 1 -40.0dB1 ower : I -40.0dB1 ower : I -40.0dB1 ower : I -40.0dB1AWGN : IOff] C/N :Wanted -Noise -Data (CH4)Clock/TrigPWR CONTRef. ClockI/Q InputCompositionScrambling Code EditScrambling Code Generator 1Scrambling Code Generator 1Scrambling Code Generator 1Scrambling Code Generator 1Scrambling Code Generator 2Chip Offset : I0 00001Scrambling Code Generator 2Scrambling Type : Long Scrambling Code Period : 000 9600C long.1,n xn : II00 00001Scrambling Type : Long Scrambling Code Period : 000 9600C long.2,n xn : 0 12 0040C long.1,n xn : II00 00001Scrambling Code Generator 3Scrambling Code Generator 3Scrambling Type : Long 1 Scrambling Code Period : 000 9600C long.1,n xn : II00 00001Scrambling Code Generator 3Scrambling Code Generator 3Scrambling Type : ILong 1 Scrambling Code Period : 000 9600C long.2,n xn : 0 12 0040C long.2,n xn : 0 12 0040Scrambling Code Generator 3Scrambling Type : ILong 1 Scrambling Code Period : 000 9600C long.2,n xn : 0 12 0040C long.2,n x	1 0100	O LUI OMBULI		Step Cursor	3.840 00 0.22] <mark>8</mark>] ULRMC	12k	
AWGN : [Off] C/N : Wanted - Noise - Data (CH4) Clock/Trig PWR CONT Ref. Clock I/Q Input Scrambling Code Edit Scrambling Code Generator 1 Scrambling Code Generator 1 Scrambling Code Generator 1 Scrambling Code Generator 1 Scrambling Code Generator 1 Scrambling Code Generator 2 000 9600 0 00000 0 00000 Chip Offset : E0 00001 Clong.1.n y : IFF FFFF Chip Offset : E0 00001 Clong.1.n y : 000 9600 Scrambling Code Generator 2 Scrambling Code Generator 2 : 000 9600 Scrambling Code Generator 2 Scrambling Code Generator 2 : 012 00001 Scrambling Code Generator 3 Scrambling Code Generator 3 : : Iff FFFF Clong.1.n xn : 1100 00001 Clong.1.n y : 1FF FFFF : Iff Seff : Trigger Scrambling Code Generator 3 Scrambling Code Generator 3 : : : : : Scrambling Code Generator 3 : : : : : : : : : : : Scrambling Co					wer : [-4 wer : [-4	0.0dB] 0.0dB]	
Scrambling Code Edit Scrambling Code Generator 1 Scrambling Type : Long Scrambling Code Period : 000 9600 C long.1.n xn : 11200 0000] C long.1.n y : 1FF FFFF Cling.2.n xn : 012 0040 C long.2.n y : 018 00FF Chip Offset : E0 00001 Scrambling Type : Long Scrambling Code Period : 000 9600 Comp.1.n xn : 11200 00001 Scrambling Code Generator 2 Scrambling Type : Long Scrambling Code Period : 000 9600 C long.1.n xn : 11200 00001 C long.1.n y : 1FF FFFF C long.2.n xn : 012 0040 C long.2.n y : 018 00FF Chip Offset : E0 00001 Scrambling Code Generator 3 Scrambling Type : Elong 1 Scrambling Code Period : 000 9600 C long.1.n xn : 11200 00001 C long.1.n y : 1FF FFFF Chip Offset : E0 00001 Scrambling Code Generator 3 Scrambling Type : Elong 1 Scrambling Code Period : 000 9600 C long.2.n xn : 012 0040 C long.2.n y : 018 00FF Chip Offset : E0 00001 Short Code Number : I/Q Phase : E0RPD 1 Trigger Delay : E 0.0Chip1 Noise Bandwidth : EChiprate X2 1	AWGN : [Off] C	Z/N :	Wanted	-	wer : L-4 Noise -	0.00B]	
CDMA Scrambling Code Edit Scrambling Type : Long Scrambling Code Period : 000 9600 C long,1,n xn : 11[20 0000] C long,1,n y : 1FF FFFF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF C long,1,n xn : 11[20 0000] C long,2,n y : 018 00FF C long,1,n xn : 1100 0000] C long,1,n y : 1FF FFFF C long,1,n xn : 1100 0000] C long,1,n y : 1FF FFFF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF C long,2,n xn : 100 0000] C long,2,n y : 018 00FF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF C long,2,n xn : 100 0000] C long,2,n y : 018 00FF C long,2,n xn : 1000 0000] C long,2,n y : 018 00FF C long,2,n xn : 1000 0000] C long,2,n y : 018 00FF C long,2,n xn : 1000 0000] C long,2,n y : 018 00FF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF C long,0,1,n xn : 1000 0000] Scrambling Type : [Long] Scrambling Code Number : I/Q Phase : [0RAD] Trigger Delay : [0.0Chip] Noise Bandwidth : [Chiprate X2] Return	Data (CH4) C	lock/Trig	PWR CONT		Ref. Cl	ock I	70 Input
Scrambling Code Generator 2 Scrambling Type : Long Scrambling Code Period : 000 9600 C long.1.n xn : 1100 0000] C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n y : 018 00FF Chip Offset : [0 0000] Scrambling Code Generator 3 Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long.1.n xn : 1100 0000] C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n xn : 100 0000] C long.1.n y : 1FF FFFF C long.2.n xn : 0 12 0040 C long.2.n xn : 0 12 0040 C long.2.n xn : 0 12 0040 C long.2.n xn : 100 00001 Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long.2.n xn : 0 12 0040 C long.2.n xn : 0 12 0040 Scrambling Type : [Long] Scrambling Code Number : I/Q Phase : [00000] Short Code Number : I/Q Phase : [00.0Chip] Noise Bandwidth : [Chiprate X2]							
Scrambling Type : Long Scrambling Code Period : 000 9600 C long, 1, n ×n : 1100 00001 C long, 1, n y : 1FF FFFF C long, 2, n ×n : 0 12 0040 C long, 2, n y : 018 00FF Chip Offset : [0 00001 Scrambling Code Generator 3 Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long, 1, n ×n : 1100 00001 C long, 1, n y : 1FF FFFF C long, 2, n ×n : 0 12 0040 C long, 2, n y : 018 00FF C long, 1, n ×n : 1100 00001 C long, 1, n y : 1FF FFFF C long, 2, n ×n : 0 12 0040 C long, 2, n y : 018 00FF C long, 2, n ×n : 100 00001 Short Code Number : I/Q Phase : [0RPD] Trigger Delay : [0.0Chip] Noise Bandwidth : [Chiprate X2]	 CDMA Scrambling	Code Edit				2	5.C.&Others
Sorambling Code Generator 3 Reset Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long,1,n xn : 1[00 0000] C long,1,n y : 1FF FFFF C long,2,n xn : 0 12 0040 C long,2,n y : 018 00FF Chip Offset : [0 0000] Short Code Number : Reset I/Q Phase : [0RAD] Return Trigger Delay : [0.0Chip] Noise Bandwidth : [Chiprate X2]			1 Scramblin <mark>8080</mark>] Clon 8040 Clon 80]	ng Code Peri g.l.n y g.2.n y	od : 000 : 1FF : 018	Í	5.C.&Others
	Scrambling Code Scrambling Ty C long.l.n xn C long.2.n xn Chip Offset	Generator pe : Long : 1[<mark>00]</mark> : 0 12 : [0 00]	2			9600 FFFF 00FF	5.C.&Others
Data (CH4) Clock/Trig PWR CONT Ref. Clock I/Q Input	Scrambling Code Scrambling Ty C long.1,n xn C long.2,n xn Chip Offset Scrambling Code Scrambling Ty C long.1,n xn C long.2,n xn Chip Offset	: Generator pe : Long : 1[30 : 0 12 (: [0 00 : Generator : pe : Long : 1[00 : 0 12 (: [0 00	2 Scrambli 0000] Clon 0040 Clon 00]	ng Code Peri g.l.n y g.2.n y	od : 000 : 1FF : 018	9600 FFFF 00FF 9600 FFFF 00FF	Trigger
	Scrambling Code Scrambling Ty C long.1.n xn C long.2.n xn Chip Offset Scrambling Ty C long.1.n xn C long.2.n xn Chip Offset Scrambling Ty C long.1.n xn C long.2.n xn	: Generator pe : Long : 1120 : 0 12 : 0 00 : Generator : 1000 : 0 12 : 0 00 : 1000 : 0 12 : 1000 : 1000 : 0 12 : 1000 : 0 12 : 1000 : 0 12 : 0 00	2 Scrambli 0000] C lon 0040 C lon 00] 3] Scrambli 0000] C lon 0040 C lon 001 Short Co	ng Code Peri g.l.n y g.2.n y ng Code Peri g.l.n y g.2.n y de Number	od : 000 : 1FF : 018 od : 000 : 1FF : 018 :	9600 FFFF 00FF 9600 FFFF 00FF 9600 FFFF 00FF	Trigger Reset

Γςι

Discover What's Possible™

Slide 155 MG3681A-E-I-1

Interfering signal generator

Setup example

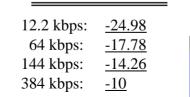
• Test Model 1

- » Transmit intermodulation test
- » ACP priority filter

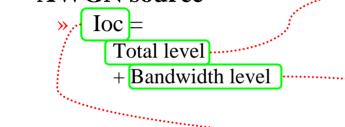
GMSK modulation

 Blocking characteristics, Intermodulation characteristics test

Pattern
Freq. 2112.500 000 00 MHz
Level – 8.00 dBm Mem. –––
D Warning Normal
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] Internal 11:B531657 22: Knob [1]
1:B11657d 12:B533257 23: Step [3.840 000/hcps] 2:B13257d 13:B5457 24: Oursor [0.22] 3:B16457d 14:B55_257 25: [9] B516457
4:85_257d 15:855_457 26: - 7.97dBm 5:85_457d 16:855_857d 27: - - - 6:855_857d 17: 28: 1 So : [-13.0dB] - - 7:8511657 18: 29: 1 So : [-12.5dB] - -
8:B513257 19: 30: 1 So : [-12:3dB] 9:B516457 20: 31: 0wer : [-18.8dB] 10:B5257 21: 32: ower : [-9.5dB]
Total Share : Symbol = 12 Wave = 87 Ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB]
Data (CH4) Clock/Trig PWR CONT Ref. Clock I/Q Input
Freq. 900.000 000 MHz
Level 5.00 dBm Mem
Normal Baseband : [On] I/Q Mod.: [Int] Pulse Mod.: [Int]
System : [351] Modulation : G15K Bit Rate : [270.833kbps]
Filter : BbT=[0.30] Differential Encode : [On] Phase Polarity : [Normal] Burst : [Off]
Pattern : [PN15]


Slide 156 MG3681A-E-I-1

AWGN generator


• AWGN mixing

- \sim C/N = Wanted signal/AWGN
 - Dynamic range test
 - C/N: [-16.8dB] Wanted -89.8dBm Noise -73.0dBm
 - Demodulation in static propagation conditions test
 - C/N: [-19.5dB] Wanted -103.5dBm Noise -84.0dBm $(R_b:12.2 \text{ kbps}, E_b/N_o: 5.5 \text{ dB})$ = 10log₁₀ $(R_b/3.84 \times 10^6) + E_b/N_o$

......

• AWGN source

Discover What's Possible™

Setup example

	Scrambling Code Generator 3 Scrambling Type : [Long] Scrambling Code Period : 000 9600 C long.1,n xn : 1[00 0000] C long.1,n y : 1FF FFFF C long.2,n xn : 0 12 0040 C long.2,n y : 018 00FF Chip Offset : [0 0000] Short Code Number :	
N	Trigger Delay : Noise Bandwidth : [Chiprate X1.5] B to control of the Burn court	MA(2/2) rambling Others
-73.0dBm	Level – 70.70 dBm Mem. –––	→ ver Cont. Program
pagation	System : [J=UDIH] W=UDIH Phase : [1] Simulation Link : [Up Link] Chip Rate : [3.840 000Mcps] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [18] ULRMC12k	Jarning Formation
e -84.0dBm 1B) _b /N _o	Ch. 1 : [On] Power : [- 4.6dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB]	rattern Clear rattern wn Load etc.
Freq.		Input MHZ
Level	- 70.81 dBm Mem	
Raseband •	Noi [On] I/Q Mod. : [Int] Pulse Mod. : [Int	rmal 1
	Bandwidth Noise : [5.760MHz] Calculated : [3.8 Calculated Level : -2 (Absolute) : -73	840MHz]

W-CDMA ^{3GPP(FDD)} UE testing

* TS 34.121 (Release 5)

6 Transmitter 7 Receiver * 5 Transmitter * 6 Receiver

1	Receiver 0 Receiver					
Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
6.4	Output power dynamics					(Slot) Pwr
6.4.2	Inner loop power control in the uplink					meter
6.4.3	Minimum output power					Circulator
7.3	Reference sensitivity level					
7.4	Maximum input level					
7.4.1	DPCH					
7.4.2	HS-PDSCH for 16QAM					
7.5	Adjacent Channel Selectivity (ACS)	MG3681A +MU368040A	MG3681A +MU368040A +MX368041B			MP1201C BERT
7.6	Blocking characteristics	+MX368041B	MG3681A +MU368040A +MX368041B +(MU368010A) +(MX368012A)	MG3692A ^{20GHz} Or		MA1612A _{3GHz} Combiner
7.7	Spurious response			MG3633A		
7.8	Intermodulation characteristics		MG3681A +MU368040A +MX368041B	2.7GHz		

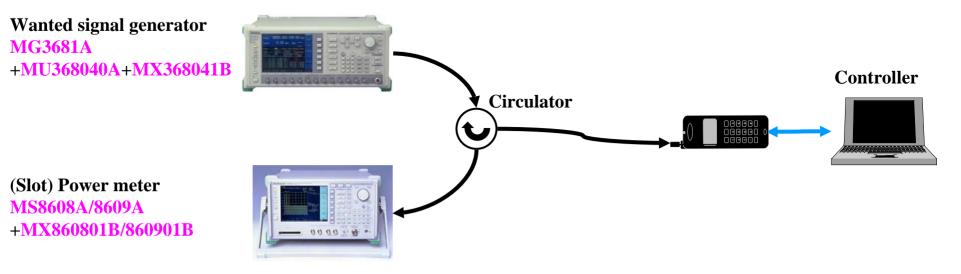
Discover What's Possible™

Slide 158 MG3681A-E-I-1

W-CDMA ^{3GPP(FDD)} UE testing

3GPP TS 25.101 (Release 5)

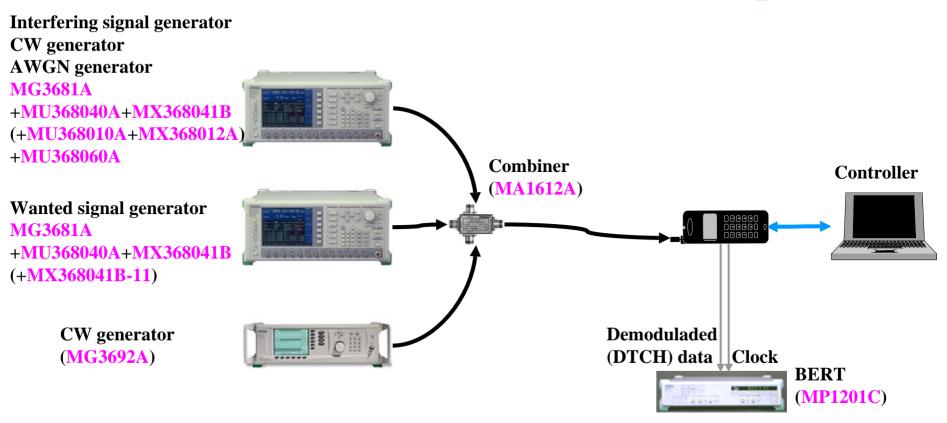
* TS 34.121 (Release 5)


* 7 Performance requirements

8 Performance requirement
 9 Performance requirement (HSDPA)

Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
8.2 8.2.3 8.3 8.4 8.5	Demodulation in static propagation conditions Demodulation in Dedicated Channel (DCH) Demodulation of DCH in multi-path fading propagation conditions Demodulation of DCH in moving propagation conditions Demodulation of DCH in birth-death propagation conditions	MG3681A +MU368040A +MX368041B				MA1612A ^{3GHz} Combiner
8.6 8.6.1	Demodulation of DCH in downlink Transmit diversity modes Demodulation of DCH in open-loop transmit diversity modes	MG3681A x2 +MU368040A +MX368041B			MG3681A	Fading
8.9 8.10 8.12 9.2 9.2.1	Downlink compressed mode Blind transport format detection Demodulation of Paging Channel Demodulation of HS-DSCH (FRC) Single Link performance	MG3681A +MU368040A +MX368041B			+MU368060A	(Fading simulator) MA1612A _{3GHz} Combiner
9.3	Reporting of Channel Quality Indicator (CQI)					(Fading simulator)

Transmitter test Connection example

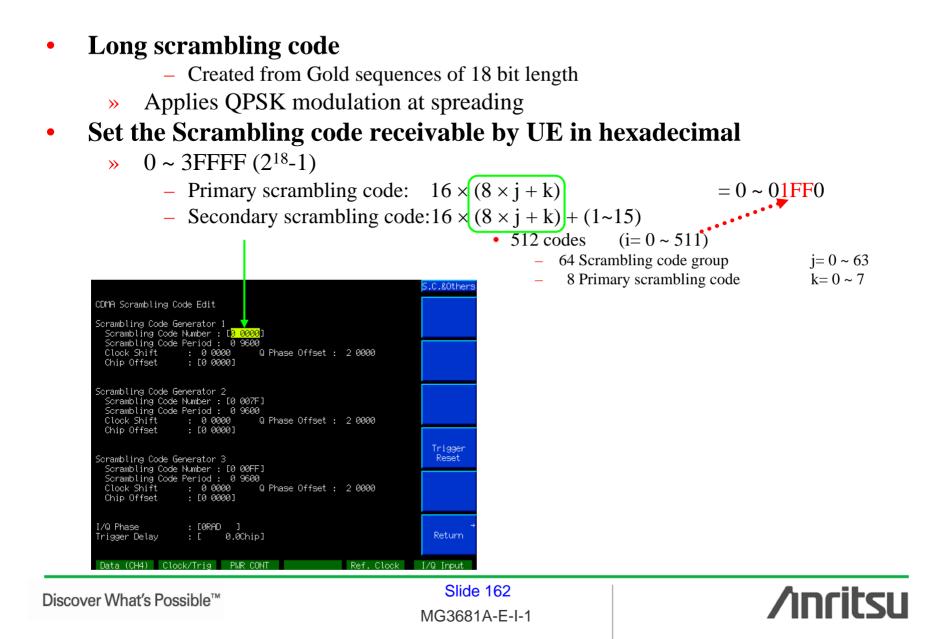

- Controller
 - Launches the Inner loop power control in the possible state by FTM Factory Test Mode control.

Discover	What's Possible™
----------	------------------

Slide 160 MG3681A-E-I-1

Receiver test Connection example

– Controller


- Launches DL RMC in receivable state by FTM Factory Test Mode control.
- Checks the CRC per demodulated transport block (DTCH) and calculates the BLER.

Slide 161 MG3681A-E-I-1

Scrambling code sync.

Setup example

Synchronization code sync.

Setup example

/incitcu

Applicable codes for SCH spreading modulation

• When scrambling code group (j) was changed... Set in reference to 3GPP TS 25.213 5.2.3.2

Table 4: Allocation of SSCs for secondary SCH

» Due to the pair with SSC Secondary Synchronisation Code allocation for S-SCH.

CDMA Channel 1-3	}		CH1 - CH3
Channel 1 (Symbo Channel Type)l Rate 15.00Ksps) : [P-CCPCH]		CH1 PhCH Edit
SF Offset Channel 2 (Symbo Channel Type	: 256 Channelizat :[0Symbol] Scrambling)[Rate 15.00Ksps) :[P-CCPCH]		→ CH2 PhCH Edit
Channel 3 (Symbo Channel Type SF	:[0Symbol] Scrambling Dl Rate 15.00Ksps)	ion Code : [1]	→ CH3 PhCH Edit
P-CCPCH Setup fo Primary Synchr Secondary Sync	or Channel : [1] ronization Code : 3gpp phronization Code Allocation		
1 : [1]	<u>Slot Code</u> <u>Slot Code</u> 5 : [9] 9 : [10] 6 : [10] 10 : [16] 7 : [15] 11 : [2] 9 : [9] 10 : [7]	13 : [15]	
4 : [8]	8 : [8] 12 : [7]		→ Return
Data (CH4) C1	.ock/Trig PWR CONT	Ref. Clock	I/Q Input
	Slide 163	3	
	MG3681A-E	-I-1	

Discover What's Possible™

For reference: 3GPP TS 25.213 (Release 5) Table 4

Group 0: Default setting

Oloup o		-1uu	10 0	cun	15																										
Scrambling							slo	t num	ber							Scrambling							slo	t num	ber						
Code Group	#0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	Code Group	#0	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14
Group 0	1	1	2	8	9	10	15	8	10	16	2	7	15	7	16	Group 32	2	7	12	15	2	12	4	10	13	15	13	4	5	5	10
Group 1	1	1	5	16	7	3	14	16	3	10	5	12	14	12	10	Group 33	2	7	14	16	5	9	2	9	16	11	11	5	7	4	14
Group 2	1	2	1	15	5	5	12	16	6	11	2	16	11	15	12	Group 34	2	8	5	12	5	2	14	14	8	15	3	9	12	15	9
Group 3	1	2	3	1	8	6	5	2	5	8	4	4	6	3	7	Group 35	2	9	13	4	2	13	8	11	6	4	6	8	15	15	11
Group 4	1	2	16	6	6	11	15	5	12	1	15	12	16	11	2	Group 36	2	10	3	2	13	16	8	10	8	13	11	11	16	3	5
Group 5	1	3	4	7	4	1	5	5	3	6	2	8	7	6	8	Group 37	2	11	15	3	11	6	14	10	15	10	6	7	7	14	3
Group 6	1	4	11	3	4	10	9	2	11	2	10	12	12	9	3	Group 38	2	16	4	5	16	14	7	11	4	11	14	9	9	7	5
Group 7	1	5	6	6	14	9	10	2	13	9	2	5	14	1	13	Group 39	3	3	4	6	11	12	13	6	12	14	4	5	13	5	14
Group 8	1	6	10	10	4	11	7	13	16	11	13	6	4	1	16	Group 40	3	3	6	5	16	9	15	5	9	10	6	4	15	4	10
Group 9	1	6	13	2	14	2	6	5	5	13	10	9	1	14	10	Group 41	3	4	5	14	4	6	12	13	5	13	6	11	11	12	14
Group 10	1	7	8	5	7	2	4	3	8	3	2	6	6	4	5	Group 42	3	4	9	16	10	4	16	15	3	5	10	5	15	6	6
Group 11	1	7	10	9	16	7	9	15	1	8	16	8	15	2	2	Group 43	3	4	16	10	5	10	4	9	9	16	15	6	3	5	15
Group 12	1	8	12	9	9	4	13	16	5	1	13	5	12	4	8	Group 44	3	5	12	11	14	5	11	13	3	6	14	6	13	4	4
Group 13	1	8	14	10	14	1	15	15	8	5	11	4	10	5	4	Group 45	3	6	4	10	6	5	9	15	4	15	5	16	16	9	10
Group 14	1	9	2	15	15	16	10	7	8	1	10	8	2	16	9	Group 46	3	7	8	8	16	11	12	4	15	11	4	7	16	3	15
Group 15	1	9	15	6	16	2	13	14	10	11	7	4	5	12	3	Group 47	3	7	16	11	4	15	3	15	11	12	12	4	7	8	16
Group 16	1	10	9	11	15	7	6	4	16	5	2	12	13	3	14	Group 48	3	8	7	15	4	8	15	12	3	16	4	16	12	11	11
Group 17	1	11	14	4	13	2	9	10	12	16	8	5	3	15	6	Group 49	3	8	15	4	16	4	8	7	7	15	12	11	3	16	12
Group 18	1	12	12	13	14	7	2	8	14	2	1	13	11	8	11	Group 50	3	10	10	15	16	5	4	6	16	4	3	15	9	6	9
Group 19	1	12	15	5	4	14	3	16	7	8	6	2	10	11	13	Group 51	3	13	11	5	4	12	4	11	6	6	5	3	14	13	12
Group 20	1	15	4	3	7	6	10	13	12	5	14	16	8	2	11	Group 52	3	14	7	9	14	10	13	8	7	8	10	4	4	13	9
Group 21	1	16	3	12	11	9	13	5	8	2	14	7	4	10	15	Group 53	5	5	8	14	16	13	6	14	13	7	8	15	6	15	7
Group 22	2	2	5	10	16	11	3	10	11	8	5	13	3	13	8	Group 54	5	6	11	7	10	8	5	8	7	12	12	10	6	9	11
Group 23	2	2	12	3	15	5	8	3	5	14	12	9	8	9	14	Group 55	5	6	13	8	13	5	7	7	6	16	14	15	8	16	15
Group 24	2	3	6	16	12	16	3	13	13	6	7	9	2	12	7	Group 56	5	7	9	10	7	11	6	12	9	12	11	8	8	6	10
Group 25	2	3	8	2	9	15	14	3	14	9	5	5	15	8	12	Group 57	5	9	6	8	10	9	8	12	5	11	10	11	12	7	7
Group 26	2	4	7	9	5	4	9	11	2	14	5	14	11	16	16	Group 58	5	10	10	12	8	11	9	7	8	9	5	12	6	7	6
Group 27	2	4	13	12	12	7	15	10	5	2	15	5	13	7	4	Group 59	5	10	12	6	5	12	8	9	7	6	7	8	11	11	9
Group 28	2	5	9	9	3	12	8	14	15	12	14	5	3	2	15	Group 60	5	13	15	15	14	8	6	7	16	8	7	13	14	5	16
Group 29	2	5	11	7	2	11	9	4	16	7	16	9	14	14	4	Group 61	9	10	13	10	11	15	15	9	16	12	14	13	16	14	11
Group 30	2	6	2	13	3	3	12	9	7	16	6	9	16	13	12	Group 62	9	11	12	15	12	9	13	13	11	14	10	16	15	14	16
Group 31	2	6	9	7	7	16	13	3	12	2	13	12	9	16	6	Group 63	9	12	10	15	13	14	9	14	15	11	11	13	12	16	10
																P															

Discover What's Possible™

• DL RMC 12.2 kbps

» Receiver test

• DL RMC 12.2 kbps

- Maximum input level (DPCH),
 Performance requirement test
 - OCNS multiplexing

	CDMA(1/2)
Freq. 2112.500 000 00 MH	Z Channel → 1-3
Level -106.70 dBm Mem	→ Channel 4-8
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int	<u>]</u>
System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcp Filter : [RNYG] Roll Off Ratio : [0.22]	Channel 9-12 & Add. 5]
Filter Mode : [EVM] Pattern Select : [<mark>16</mark>] DL_C31 Maximum Code Number : [4] Output Level -106.68dBm	Cal
Ch. 1 : [On] Power : [-5.3dB] SCH Pr : [-8.3dB] So : [-8.3d Ch. 2 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] So : [-40.0d Ch. 3 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] So : [-40.0d Ch. 4 : [On] Power : [-10.3dB] Ch. 5 : [On] Power : [-8.3d Ch. 6 : [On] Power : [-3.3dB] Ch. 7 : [Off] Power : [-40.0d	B] B] B] B] B]
Ch. 8 : [Off] Power : [-40.0dB] Ch. 9 : [Off] Power : [-40.0d Ch.10 : [Off] Power : [-40.0dB] Ch.11 : [Off] Power : [-40.0d Ch.12 : [Off] Power : [-40.0dB] Add Ch : Off Power : [-40.0d	B] *
Data (CH4) Clock/Trig PWR CONT Ref. Clock	L/O Input
	ing input
	CDMA(1/2)
Freq. 2112.500 000 00 MH	CDMA(1/2)
Freq. 2112.500 000 00 MH Level - 25.00 dBm Mem	CDMA(1/2) Channel 1-3 Channel →
Freq. 2112.500 000 00 MH Level - 25.00 dBm Mem D Warning Normal	CDMA(1/2) Channel * 1-3 Channel *
Freq. 2112.500 000 00 MH Level - 25.00 dBm Mem D Warning Normal Baseband : [On] 1/0 Mod. : [Int] Pulse Mod. : [Int System : [W-CDMA] W-COMA Phase : []] Simulation Link : [Down Link] Chip Rate : [] 3.840 00000000000000000000000000000000000	CDMA(1/2) Channel 1-3 Channel 4-8
Freq. 2112.500 000 00 MH Level - 25.00 dBm Mem. D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int System : [W-CDMA] Simulation Link : [Down Link] Filter : [RNWQ] H-CDMA Phase : [1] Chip Rate : [3.840 000Mcp Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [3] D32T1850 Maximum Code Number : [20] Output Level - 25.03dBm	CDMA(1/2) Channel I-3 Channel 4-8 Channel 9-12 & Add.
Freq. 2112.500 000 00 MH Level - 25.00 dBm Mem. D Warning Normal Baseband : [On] 1/0 Mod. : [Int] Pulse Mod. : [Int System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] H-CDMA Phase : [1] Chip Rate : [3.840 000Mcp Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [9] D32T1850 Maximum Code Number : [20] Ch. 1 : [On] Power : [-12.0dB] SCH Pr : [-15.0dB] Sc : [-15.0dB] Ch. 2 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Sc : [-40.0d] Ch. 3 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Sc : [-40.0d]	CDMA(1/2) Channel Channel Channel Channel 9-12 & Add. B] B] B] B] B] B] B] B] B] B] B] B] B]
Freq. 2112.500 000 00 MH Level 25.00 dBm Mem. D Warning Normal Baseband : [On] I/0 Mod. : [Int] Pulse Mod. : [Int] System : [UH-CDMA] UH-CDMAP Phase : [I] Simulation Link : [Down Link] UH-CDMAP Phase : [I] Filter : [RNMQ] Roll Off Ratio : [0] D32T1850 Maximum Code Number : [201 Output Level - 25.03dBm Ch. 1 : [On] Power : [-12.0dB] SCH Pr : [-15.0dB] Sch : [-15.0d] Sch Pr : [-40.0dB] Sch : [-40.0d]	CDMA(1/2) Channel Channel Channel Channel 9-12 & Add. Cal B1 B1 B1 B2 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1

/inritsu

Slide 165 MG3681A-E-I-1

- DL RMC 12.2 kbps
- DL RMC 64 kbps
- DL RMC 144 kbps
- DL RMC 384 kbps
 - » Performance requirement test
- DL RMC 12.2 kbps DPCCH with 4 pilot bits as phase reference
 - Demodulation of DCH in multipath fading propagation conditions (Case 7) Test 21~25 test

Freq. 2112	2.500 00	00 00 MHz	Pattern
_{Level} – 3	.00 dBm D Warning	Mem. ——— Normal	
Baseband : [0n] Internation 11:DAMR38s6 1:4Ps0 12:DCP11540 2:BTFD1s0 13:DCP12540 3:BTFD2540 14:DCP21540) 23:F2P0s0 Step) 24:F3A0s0 Curso	[1] [3.840 000Mcps]	
4:BTFD350 14:DCP2134 4:BTFD350 15:DCP22540 5:D3271850 16:DCP23540 6:D3272850 17:D1SDN850 7:D3273850 18:DL_C31 8:D3274850 19:DL_INTR) 26:F4P050) 27:F5P050) 28:OTD150 29:OTD250	2.98dBm 2.98dBm Sc : [- 8.3dB] Sc : [-40.0dB] Sc : [-40.0dB]	
'9:DAMR1850'' 20:F1A050 10:DAMR2850 21:F1P050 Total Share : Symbol = 3	31: 32: 9 Wave = 125	ower : [- 8.3dB] ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB]	
Data (CH4) Clock/Trig	PWR CONT	Ref. Clock	I/Q Input

Slide 166 MG3681A-E-I-1

• DL compressed mode

- » Downlink compressed mode test
 - Test 1,2: Reference pattern 1 Set 1
 - DL SF/2 (Spreading factor reduction)
 - Test 3,4: Reference pattern 1 Set 2
 - DL Puncturing
 - Reference pattern 2 Set 1
 - Reference pattern 2 Set 2
 - DL SF/2 (Spreading factor reduction)
 - Reference pattern 2 Set 3
 - DL Puncturing

• DL RMC BTFD

- » Blind transport format detection test
 - Test 1,4: 12.2 kbps (Rate 1)
 - Test 2,5: 7.95 kbps (Rate 2)
 - Test 3,6: 1.95 kbps (Rate 3)

• DL PCH

» Demodulation of Paging Channel test

Slide 167 MG3681A-E-I-1

		Pattern
Freq. 2112.500) 000 00 MHz	
Level - 3.00 dE	Bm Mem. ———	
D Warning	Normal	
Baseband : [On] I/Q Mod.	: [Int] Pulse Mod. : [Int]	
Internal 11:DAMR38s0 22:F2A0s0 1:4Ps0 12:DCP11540 23:F2P0s0	Knob [1] Step [3.840 000Mcps]	
2:BTFD1s0 13:DCP12540 24:F3R0s0 3:BTFD2s0 14:DCP21540 25:F3P0s0 4:BTFD3s0 15:DCP22540 26:F4P0s0	[0.22] [18] DL_C31 - 2.98dBm	
5:D32T1850 16:DCP23540 27:F5P050 6:D32T2850 17:DISDN850 28:OTD150] Sc : [- 8.3dB]	
7:D32T38s0 18:DL_C31 .29:0TD2s0 8:D32T48s0 19:DL_INTR 30:PCHs0] Sc : [-40.0dB]] Sc : [-40.0dB]	
9:DAMR18s0 20:F1A0s0 31: 10:DAMR28s0 21:F1P0s0 32:	ower : [- 8.3dB] ower : [-40.0dB] ower : [-40.0dB]	
Total Share : Symbol = 39 Wave = 12		
Data (CH4) Clock/Trig PWR CONT	Ref. Clock	L/O Input
MS8609A 2003/03/10 03:49:16		Demodu Lation
MS8609A 2003/03/10 03:49:16	asure : Single	
MS8609A 2003/03/10 03:49:16		Demodu Lation
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me	asure : Single Slot Number : 1 Filtered Power -6.97 dBm	Demodu Lation
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me	asure : Single Slot Number : 1 Filtered Power -6.97 dBn NF Mkr (CH/SF: 96/128) Abs. : -20.60 dBn	Demodu lation Data
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBm] -10	asure : Single Slot Number : 1 Filtered Power -6.97 dBm NF Mkr (CH/SF: 96/128) Abs. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/ 64) Abs. : -18.70 dBm	Demodulation Data Refresh Wave Memory On Off Demod
MS38609A 2003/03/10 03:49:16 <pre></pre>	asure : Single Slot Number : 1 Filtered Power -6.97 dBm NF MGC (CH/SF: 96/128) Abs. : -20.60 dBm Rel. : -13.62 dB CF MGC (CH/SF: 48/ 64) Abs. : -18.70 dBm Rel. : -11.73 dB 60[Slot]	Demodulation Data Refresh Wave Memory On Off
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBm] -10 -30 -50 -50	Slot Number : 1 Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power 6.97 dBm Rel. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/64) Abs. : -18.70 dBm Rel. : -11.73 dB 60(5)01] +6 +7 +8 +9	Beefresh Wave Memory On Off Demod Channel NF CF *
MS8609A 2003/03/10 03:49:16 << Demodulation Data (₩-CDMA) >> Me [dBm] -10 -30 -50 -50 -70 1 Compress +0 +1 +2 +3 +4 +5 0 9000 0AB9 80C2 B3F9 FFFA	Slot Number : 1 Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power 6.97 dBm Rel. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/64) Abs. : -18.70 dBm Rel. : -11.73 dB 60(5)01] +6 +7 +8 +9	Bemodulation Data Refresh Wave Memory On Off Demod Channel NF CF
MS8809A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBn] -10 -30 -50 -70 1 Compress +0 +1 +2 +3 +4 +5 0 9000 0AB9 80C2 B3F9 FFFA 10	Slot Number : 1 Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power 6.97 dBm Rel. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/64) Abs. : -18.70 dBm Rel. : -11.73 dB 60(5)01] +6 +7 +8 +9	Demodulation Data Refresh Wave Memory On Off Demod Channel NF CF * Calibration
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBm] -10 -30 -50 -50 -70 1 Compress +0 +1 +2 +3 +4 +5 0 9000 0AB9 80C2 B3F9 FFFA 10 30 40	Slot Number : 1 Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power 6.97 dBm Rel. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/64) Abs. : -18.70 dBm Rel. : -11.73 dB 60(5)01] +6 +7 +8 +9	Beefresh Wave Memory On Off Demod Channel NF CF *
MS8809A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBn] -10 -30 -50 -70 1 Compress +0 +1 +2 +3 +4 +5 0 9000 0AB9 80C2 B3F9 FFFA 20	Slot Number : 1 Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power Filtered Power 6.97 dBm Rel. : -20.60 dBm Rel. : -13.62 dB CF Mkr (CH/SF: 48/64) Abs. : -18.70 dBm Rel. : -11.73 dB 60(5)01] +6 +7 +8 +9	Demodulation Data Refresh Wave Memory On Off Demod Channel NF CF * Calibration Adjust Range →
MS8609A 2003/03/10 03:49:16 << Demodulation Data (W-CDMA) >> Me [dBn] -10 -30 -50 -70 1 Compress +0 +1 +2 +3 +4 +5 0 9000 0AB9 80C2 B3F9 FFFA	asure : Single Slot Number : 1 Filtered Power -6.97 dBa NF MGr (CH/SF: 96/128) Abs. : -20.60 dBa Rel. : -13.62 dB CF MGr (CH/SF: 48/ 64) Abs. : -18.70 dBa Rel. : -11.73 dB 60[Slot] +6 +7 +8 +9 	Demodulation Data Refresh Wave Memory On Off Demod Channel NF CF * Calibration

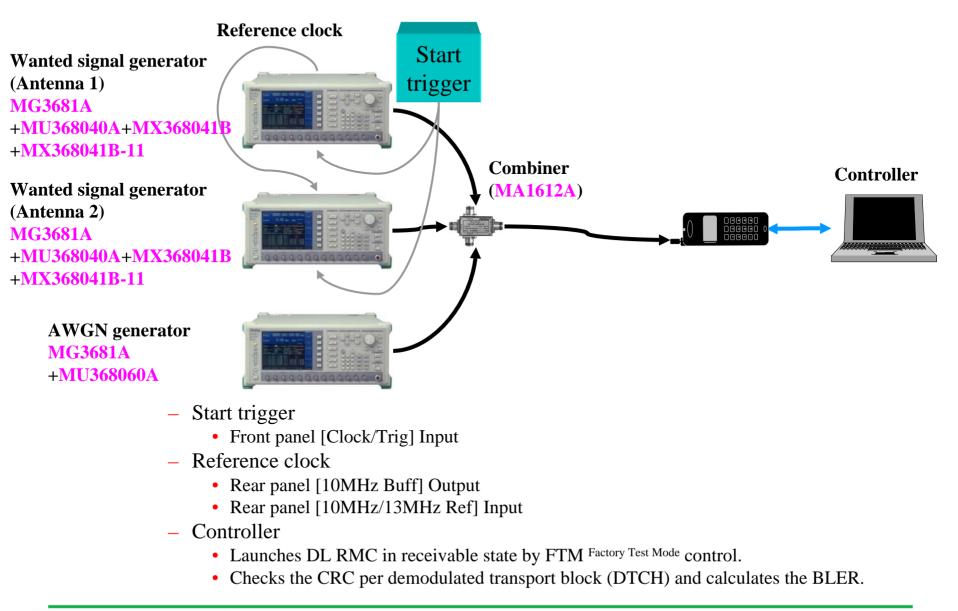
Interfering signal generator

Setup example

•	ACP	priority	filter
---	-----	----------	--------

» OCNS multiplexing

	CDMA(1/2)
Freq. 2112.500 000 00 MHz	→ Channel 1-3
Level - 52.00 dBm Mem	→ Channel 4-8
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]	→
System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcps] Filter : [RMYQ]Roll.Off.Ratio.:.[0.22]	Channel 9-12 & Add.
Filter Mode : [ACP] : Pattern Select : [<mark>17</mark>] DL_INTR : Maximum Code Number : [19] : Dutput Level :: 51:97dBm	Cal
Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Sc : [-13.0dB] Ch. 2 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Sc : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] SCH Pr : [-40.0dB] Sc : [-40.0dB] Ch. 4 : [Off] Power : [-40.0dB] Ch. 5 : [On] Power : [-15.0dB] Ch. 6 : [Off] Power : [-40.0dB] Ch. 7 : [Off] Power : [-40.0dB]	Even Level
Ch. 8 : [Off] Power : [-40.0dB] Ch. 9 : [Off] Power : [-40.0dB] Ch.10 : [Off] Power : [-40.0dB] Ch.11 : [Off] Power : [-40.0dB] Ch.12 : [On] Power : [-10.0dB] Add Ch : On Power : [-1.1dB]	*
Data (CH4) Clock/Trig PWR CONT Ref. Clock	I/Q Input



Slide 168 MG3681A-E-I-1

AWGN generator Setup example

AWGN source Noc=Total level+	Bandwidth level	
	12.500 000 00 r	AWGN 1Hz
Level – 5	57.81 dBm Mem	**************************************
	Q Mod. : [Int] Pulse Mod. : [Int] ndwidth Noise : [<mark>5.760MHz</mark>] Calculated : [3.840 Calculated Level : -2.19 (Absolute) : -60.00	dB A
scover What's Possible™	Slide 169 MG3681A-E-I-1	I/Q Input

Open-loop TX Diversity mode test Connection example

Slide 170

MG3681A-E-I-1

• DL RMC 12.2 kbps

- » Demodulation of DCH in open-loop Transmit diversity mode test
 - Antenna 1
 - Antenna 2

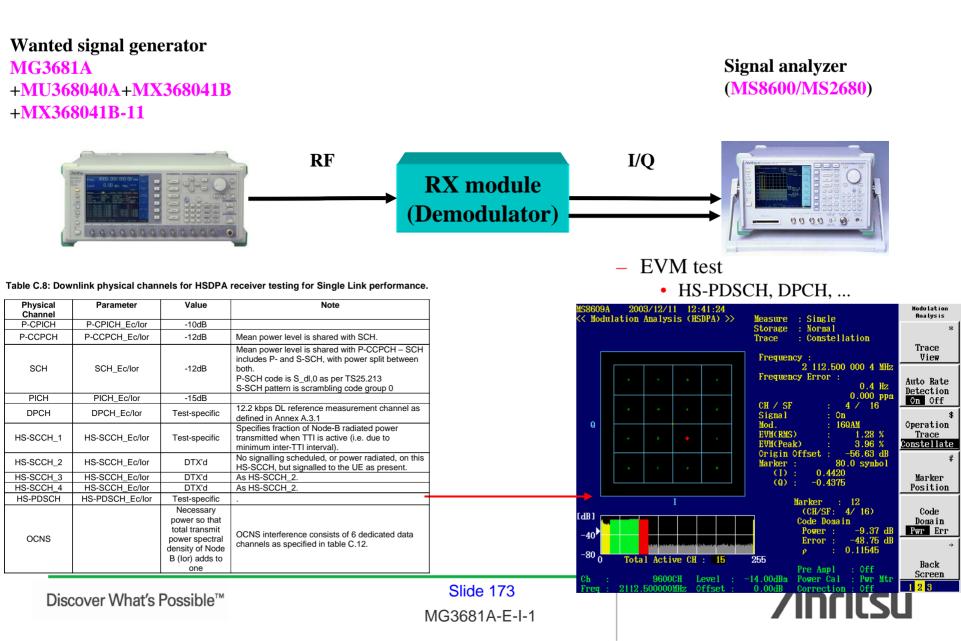
• Setting External Start trigger

 Captures/ Synchronizes the Trigger only once

• Trigger recapture/ synchronization

			S.C.&Others		Reference Clock Source	
CDMA Scrambling C	ode Edit		p.c.authers		Reference Clock / Chi; Input Polarity Frame Clock	> Clock : [1 : [Rise]
Scrambling Code G Scrambling Type	enerator 1	d : 000 9600 : 1FF FFF : 018 00FF			Prame clock Data Input External Power Contro Output Port Setup Data Channel Assign Data Output Type Data Phase Reference Clock	: [Positive]
Scrambling Code G Scrambling Type C long,1,n xn C long,2,n xn Chip Offset	: Long Scrambling Code Period :1[00 0000] C long,1,n y	d : 000 9600 : 1FF FFFF : 018 00FF			Output Polarity Data Output (A)&(B) Data Clock Symbol Clock Slot Clock Frame Clock Code Output I/Q (A)&(B	: [Positive] : [Rise] : [Rise] : [Rise] : [Rise] : [Rise]
Scrambling Code G Scrambling Type C long,1.n xn C long,2.n xn Chip Offset	: [Long] Scrambling Code Period : 1[00 0000] C long,1,n y	d : 000 9600 : 1FF FFFF : 018 00FF	Trigger Reset		Peak Clipping Max. Peak Power / RMS Data (CH4) Clock/Trig	: [Off] Power : [20.0dB]
I/Q Phase Trigger Delay Noise Bandwidth	: [ØRAD] : [<mark>1024.0Chip</mark>] : [Chiprate X2]		→ Return	Slide 171 1G3681A-E-I-1		
Data (CH4) Clo	ck/Trig PWR CONT	Ref. Clock	I/Q Input			

				Pattern
Freq.	2112	2.500 0	00 00 MHz	z
Level .	- 3.	00 dBm	Mem	
		D Warning	Normal	
Baseband I:4Ps0 2:BTFD1s0 3:BTFD2s0 4:ETFD3s0 5:D32T1850 6:D32T1850 7:D32T3850 8:D32T4850 9:D4NR1850 9:D4NR1850	12:DCP11540 13:DCP12540 14:DCP21540 15:DCP22540 16:DCP22540 17:DISDN8s0	22:F2A050 Kn 23:F2P050 St 24:F3A050 Cu 25:F3P050 26:F4P050 27:F5P050 28:0TD150 29:0TD250 30:PCH50 31:	ep rsor [0.22] [18] DL_C31 - 2.98dBm] Sc : [- 8.3dB] Sc : [-40.0dB ouer : [- 8.3dB	
	: Symbol = 39 Clock/Trig		ower : [-40.0dB ower : [-40.0dB ower : [-40.0dB ower : [-40.0dB	
Data (CH4)	Clock/Irig	PWR CUNI	Ref. Clock	I∕⊍ Input Baseband
Frame Cloo Frame Cloo Frame Cloo Reference Reference Input Polari Frame Cloo Data Input External F Output Port Data Chann Data Outpu Data Chann Data Outpu Data Chann Data Outpu Data Cloo Symbol Cloo Symbol Cloo Frame Cloo Code Outpu	Etup k/Trigger Sou k/Trigger Sel k Period Corr Clock Source Clock / Chip ty k Setup vel Assign it Type Clock ity t (A)&(B) k k k k t I/Q (A)&(B)	rce : [Ext ect : [Tri ection : [Tri context] : [Int Clock : [1] : [Rise] : [Positive] : [1] : [Symbol] : [x/4] : [Chip Clock X2 : [Positive] : [Rise] : [Rise] : [Rise] : [Rise] : [Rise] : [Rise] : [Rise]		
Peak Clippir Max. Peak		: [Off] ower : [20.0dB]		→ Return
Data (CH4)	Clock/Trig	PWR CONT	Ref. Clock	
			/inrit	SU


- Set TPC command for Inner loop power control
 - » 60 TPC command (60 slots) cycle
 - Step A (1 dB step {0})
 - [82A BE82 ABE8 2ABE] _H 1000 0010 1010 1011 1110 ...
 - Step B (1 dB step $\{0,0,0,0,+1\}$)
 - [FFF FFFF FFFF FFFF] _H 1111 1111 1111 ...
 - Step C (1 dB step $\{0,0,0,0,-1\}$)
 - [000 0000 0000 0000] _H 0000 0000 0000 ...
 - Step D (1 dB step {+1})
 - [FFF FFFF FFFF FFFF] _H 1111 1111 1111 ...
 - Step E (1 dB step {-1})
 - [000 0000 0000 0000] _H 0000 0000 0000 ...
 - Step F (1 dB step {+1})
 - [FFF FFFF FFFF FFFF] _H 1111 1111 1111 ...

Phys	sical char	nnel		: DL-DPCH		PhCH Edit
	Data 1	TPC	TFCI	Data 2	Pilot	
	(6)	(2)	(2)	(22)	(8)	
	5lot Forma Jata TPC TFCI Antenna JPCCH/DPDC BER		er Ratio	: [<mark>#1]</mark>] : [DCH] : [555 5555 5555 5555] : [000]H : [1] o : [0.0]dB : -		Return →
Dat	ta (CH4)	Cloc	k/Trig	PWR CONT	Ref. Clock	I/Q Input

- Step G (2 dB step {-1})
 - [000 0000 0000 0000] _H 0000 0000 0000 ...
- Step F (2 dB step $\{+1\}$)
 - [FFF FFFF FFFF FFFF] _H 1111 1111 1111 ...
- Minimum output power test
 - [000 0000 0000 0000] _H
 0000 0000 0000 ...

/inritsu

HSDPA demodulation test Connection example

HSDPA Baseband test

Connection example

Wanted signal generator MG3681A +MG3681A-11 +MU368040A+MX368041B +MX368041B-11

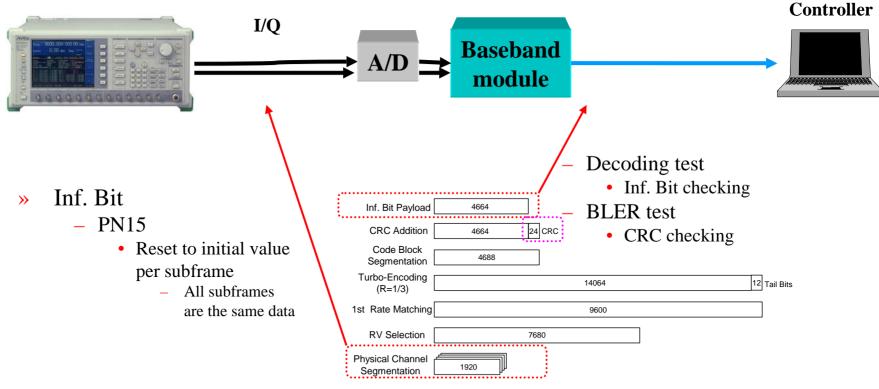
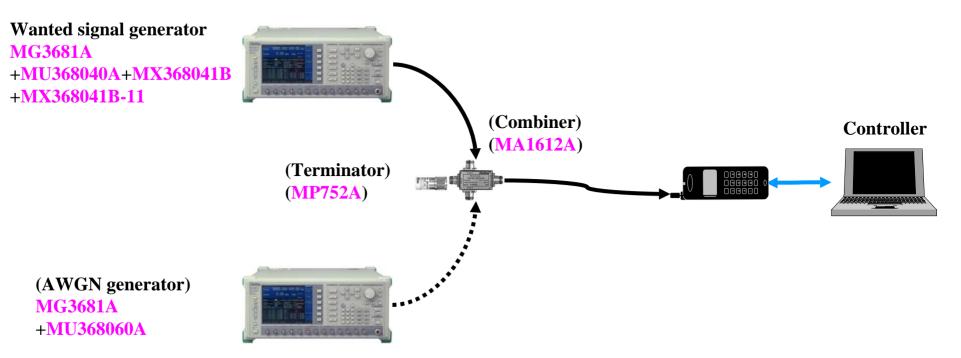



Figure A.17: Coding rate for Fixed reference Channel H-Set 3 (16QAM)

Slide 174 MG3681A-E-I-1

HSDPA CQI test Connection example

- Controller
 - Launches DL FRC in receivable state by FTM Factory Test Mode control.
 - Monitors CQI ^{Channel Quality Indicator} on UL HS-DPCCH and calculates BLER of DL HS-PDSCH.

Discover What's Possible™

Slide 175

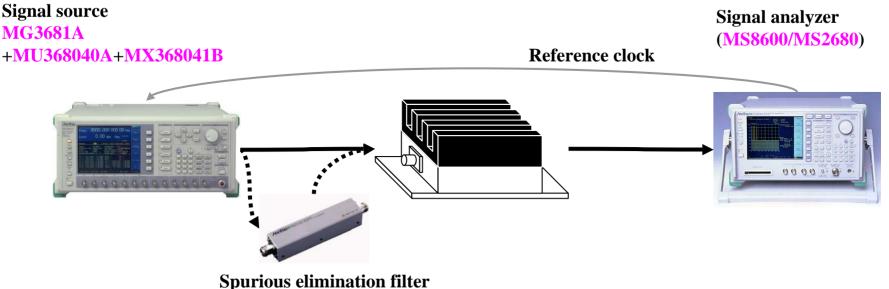
MG3681A-E-I-1

• **DL FRC**

- » H-Set 1
 - 16QAM
 - QPSK
- » H-Set 2
 - 16QAM
 - QPSK
- » H-Set 3
 - 16QAM
 - QPSK
- » H-Set 4
 - QPSK
- » H-Set 5
 - QPSK

• ALC Off

	Pattern
Freq. 2112.500 000 00 MHz	
Level - 3.00 dBm Mem	
D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]	
Internal 11:DAMR38s0 22:F2A0s0 Knob [1]	
1:4Ps0 12:DCP11540 23:F2P0s0 Step [3.840 0001cps] 2:BTFD1s0 13:DCP12540 24:F3R0s0 Cursor [0.22] 3:BTFD2s0 14:DCP21540 25:F3P0s0 [18] DL_C31	
4:BTFD3s0 15:DCP22540 26:F4P0s0 - 2.98dBm 5:D32T18s0 16:DCP23540 27:F5P0s0	
7:D32T38s0 18:DL_C31 29:0TD2s0] Sc : [-40.0dB] 8:D32T48s0,*49:DL_INTR** 30:PCHs0] Sc : [-40.0dB]	
9:DAMR1850: 20:F1A050 31: 10:DAMR2850: 21:F1P050 32: ower: [-40.0dB] ower: [-40.0dB]	
Total Share : Symbol = 39 Wave = 125 Ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB]	
Data (CH4) Clock/Trig PWR CONT Ref. Clock	L/O Input
	iza input
	Level(2/2)
Freq. 2112.500 000 00 MHz	Level(2/2) V <u>olt</u> . Unit
	Level(2/2)
Level = 7.0 <mark>0</mark> dBm Mem	Level(2/2) V <u>olt</u> . Unit
	Level(2/2) V <u>olt</u> . Unit
Level - 7.00 dBm Mem D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [1]	Level(2/2) V <u>olt</u> . Unit
Level - 7.00 dBm Mem D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcps] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [24] F3A050	Level(2/2) Volt. Unit ENF Term
Level - 7.00 dBm Mem D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] Simulation Link : [Down Link] Chip Rate : [3.840 0001cps] Filter : [RNY0] Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [24] F3R050 Maximum Code Number : [44] Output Level - 7.02dBm Ch. 1 : [On] Power : [-12.0dB] SCH Pr : [-15.0dB] Sc : [-15.0dB]	Level(2/2) Volt. Unit ENF Term
Level 7.00 dBm Mem. D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [M=CDMA] W=CDMA Phase : [I] System : [M=CDMA] W=CDMA Phase : [I] Simulation Link : [Down Link] Chip Rate : [3.840 000Hops] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [EVH] Pattern Select : [24] F3A050 Maximum Code Number : [44] Output Level - 7.02dBm Ch. 1 : [On] Power : [-12.0dB] SCH Pr : [-15.0dB] Sc : [-15.0dB] Ch. 2 : [On] Power : [-40.0dB] SCH Pr : - Sc : - Ch. 3 : [Off] Power : [-40.0dB] SCH Pr : - Sc : -	Level(2/2) Volt. Unit ENF Term ALC On Off
Level - 7.00 dBm Mem D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [I] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcps] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [EVM1] Pattern Select : [24] F3R0s0 Maximum Code Number : [-12.0dB] SCH Pr : [-15.0dB] Sch : [-15.0dB] Ch. 1 : [On] Power : [-12.0dB] SCH Pr : [-15.0dB] Sch : [-15.0dB] Ch. 2 : [On] Power : [-10.0dB] SCH Pr : - So : - Ch. 3 : [Off] Power : [-10.0dB] SCH Pr : - So : - Ch. 4 : [On] Power : [-10.0dB] Ch. 5 : [On] Power : [-10.0dB] Ch. 5 : [On] Power : [-10.0dB] Ch. 7 : [On] Power : [-18.0dB]	Level(2/2) Volt. Unit ITF Term
Level - 7.00 dBm Mem D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcps] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [EVM] Pattern Select : [24] F3A0s0 Maximum Code Number : [44] Output Level - 7.02dBm Ch. 1 : [On] Power : [-12.0dB] SCH Pr : - Sc : - Ch. 3 : [Off] Power : [-10.0dB] SCH Pr : - Sc : - Ch. 3 : [Off] Power : [-10.0dB] SCH Pr : - Sc : - Ch. 4 : [On] Power : [-10.0dB] Ch. 5 : [On] Power : [-10.0dB] Ch. 5 : [On] Power : [-10.0dB] Ch. 7 : [On] Power : [-18.0dB] Ch. 6 : [Dn] Power : [-10.0dB] Ch. 7 : [On] Power : [-18.0dB]	Level(2/2) Volt. Unit ITF Term


/inritsu

Discover What's Possible™

Slide 176 MG3681A-E-I-1

RF/IF components test

Connection example

(MA2512A)

- Unwanted signals can be eliminated by connecting the filter if the spurious of signal source obstructs the evaluation.

Spurious of MG3681A

660 MHz (IF leakage)
 +660 MHz offset (Local leakage)
 2×freq./3×freq. (2nd/3rd harmonics)

Discover What's Possible™

Slide 177 MG3681A-E-I-1

Downlink signal

BS transmitter test

- Test Model 1
 - » Single carrier
 - » multi-carrier (2 carriers)
- Test Model 2
- Test Model 3
- Test Model 4
- Test Model 5
 - » Single carrier
 - » multi-carrier (2 carriers)

• ACP priority filter

- » Spectrum emission mask
- » ACLR
- » Spectrum emissions

Setup example

	Pattern
Freq. 2112.500 000 00 MH;	z
Level - 8.00 dBm Mem	
D Warning Normal	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] Internal 11:BS31657 22: Knob [1]	
1:B11657d 12:BS33257 23: Step [3.840 00010ps 2:B13257d 13:BS457 24: Cursor [0.22]	5]
3:B16457d 14:B55_257 25: [9] B516457 4:B5_257d 15:B55_457 26: - 7.97dBm 5:B5_457d 16:B55_857 27:	
6:85.857d 17: 28:] So : [-13.0d 7:8511657 18: 29:] So : [-12.5d	8]
8:BS13257 19: 30:] Sc : [-12.5d 9:BS16457 20: 31: ower : [-18.0d 10:BS257 21: 32: ower : [-9.5d	3]
10:85257 21: 32: Total Share : Symbol = 12 Wave = 87 Ower : [- 9.5dE Ower : [- 9.5dE Ower : [- 40.0dE	3]
ower : [- 1.1dB	30
Data (CH4) Clock/Trig PWR CONT Ref. Clock	, I/Q Input
	CDMA(1/2)
Freq. 2112.500 000 00 MH;	Z Channel 1-3
Level - 8.00 dBm Mem	→
D Warning Normal	Channel 4-8
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]	-
	Channel
System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Down Link] Chip Rate : [3.840 000Mcps	9-12 & Add.
Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [ACP] Pattern Select : [9] BS16457	9-12 & Add.
Filter : [RMYQ] Roll Off Ratio : [0.22] → Filter Mode : [ACP] Pattern Select : [9] BS16457 <u>Maximum Code Number : [68] Output Level - 7.97dBm</u> Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Sc : [-13.0dB	5] 9-12 & Add.
Filter : [RNYQ] Roll Off Ratio : [0.22] → Filter Mode : [ACP] Pattern Select : [9] BS16457 <u>Maximum Code Number : [68] Output Level - 7.97dBm</u> Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Sc : [-13.0dB Ch. 2 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB] Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB] Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB] Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc :	5] 9-12 & Add. Cal 2] 2] 2] 2] 2] 2] 2]
Filter : [RMYQ] Roll Off Ratio : [0.22] → Filter Mode : [ACP] Pattern Select : [9] BS16457 Maximum Code Number : [68] Output Level - 7.97dBm Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Sc : [-13.0dB Ch. 2 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB Ch. 4 : [On] Power : [-9.5dB] Ch. 5 : [On] Power : [-18.0dB Ch. 6 : [Off] Power : [-9.5dB] Ch. 7 : [Off] Power : [-9.5dB	9-12 & Add. Cal Cal Even Level
Filter : [RNYQ] Roll Off Ratio : [0.22] → Filter Mode : [ACP] Pattern Select : [9] BS16457 <u>Maximum Code Number : [68] Output Level - 7.97dBm</u> Ch. 1 : [On] Power : [-10.0dB] SCH Pr : [-13.0dB] Sc : [-13.0dB Ch. 2 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB] Ch. 3 : [Off] Power : [-9.5dB] SCH Pr : [-12.5dB] Sc : [-12.5dB]	9-12 & Add. Cal Even Level

/inritsu

Discover What's Possible™

Slide 178 MG3681A-E-I-1

CCDF

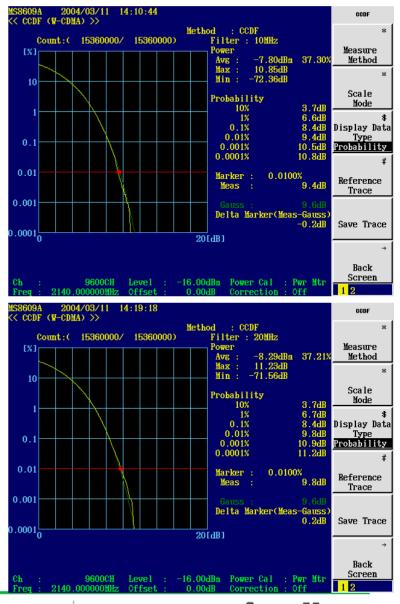
2004/01/27 16:10:24 APOARS CODE (CCDF (W-CDMA) >> Method : CCDF * Count : (15360000/ 15360000) Filter : 10MHz Measure Power **F%1** -8.48dBm 36.61% Method Ave : Max : 11.04dB Min : -66.78dB -10 Scale Probability Mode 3.7dB 10% 6.9dB 1% 0.1% 8.6dB Display Data Type Probability 0.01% 9 8dB 0.1 0.001% 10.9dB 11.0dB 0.0001% # 0.01 Marker : 0.0100% Reference 9.8dB Meas Trace 0.001 Delta Marker(Meas-Gauss) 0.2dB Save Trace 0.0001 201dB1 Back Pre Ampl : Off Power Cal : Pwr Mtr Screen 96000H Level : -16.00dBm 2140 00000 Affeat 0.004E 2004/03/11 13:54:39 CCDF < CCDF (W-CDMA) >> Method : CCDF ÷ Count : (15360000/ 15360000) Filter : 20MHz Measure Power [%] Avg : -8.20dBm 36.79% Method Max : 11.10dB Min : -85.24dB æ 10 Scale Probability Mode 3.7dF 10% 6.8dB 8.7dB 1% 0.1% Display Data 0.01% 9.9dB Туре 0.1 0.001% 10.7dB 11.1dB Probability 0.0001% # 0.01 Marker : 0.0100% Reference 9.9dB Meas : Trace 0.001 Delta Marker(Meas-Gauss) 0.3dB Save Trace 0.0001 20[dB] Back Screen 9600CH Level : -16.00dBm Power Cal : Pwr Mtr 0.00dB Offset Correction : Off

• Test Model 1

- » 64 DPCH
 - Single carrier

– 2 carriers

/inritsu


Slide 179 MG3681A-E-I-1

CCDF

- » 30 DPCH + 8 HS-PDSCH
 - Single carrier

– 2 carriers

/inritsu

Slide 180 MG3681A-E-I-1

Downlink signal

Setup example

UE receiver test

- DL RMC 12.2 kbps
 - » for RX test
 - » for Performance test
- DL RMC 64 kbps
- DL RMC 144 kbps
- DL RMC 384 kbps

Level - 3.00 dBm Mem. D Warning Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] Internal II:DAMR3850 22:F2A050 I:4Ps0 I2:DCP11540 23:F2P050 2:BTFD150 I3:DCP12540 24:F3A050 3:BTFD250 I4:DCP21540 25:F3P050 4:BTFD360 I5:DCP22540 26:F4P050 5:D32T1850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP22540 26:F4P050 6:D32T2850 I6:DCP23540 27:F5P050 6:D32T2850 I8:DL_C3I 29:0TD250 8:D32T4850 I9:DL_INTR 30:PCH50 9:DHMR1850 20:F1A050 31: I0:DAMR2850 21:F1P050 32: Duer : [-40.0dB] Duer : [-40.0dB] Duer : [-40.0dB] Duer : [-40.0dB]		000 00 MHz	Pattern
Internal 11:DAMR38s0 22:F2A0s0 Knob [1] 1:4Ps0 12:DCP11540 23:F2P0s0 Step [0] 3.840 000Mcps] 2:BTFD1s0 13:DCP12540 24:F3A0s0 Cursor [0] [0] 22] 3:BTFD2s0 14:DCP21540 25:F3P0s0 Cursor [0] [1] - 2.98dBm 5:D32T18s0 16:DCP23540 27:F5P0s0 - 2.98dBm - 2.98dBm 7:D32T38s0 18:DL_C31 29:0TD2s0 1 Sc : [-8.3dB] - - 8:D32T48s0 19:DL_S1NTR 30:PCH50 31: Ower : [-8.3dB] - Sc : [-40.0dB] 9:DAMR18s0 20:F1A0s0 31: Ower : [-40.0dB] - - - 10:DAMR28s0 21:F1P0s0 32: ower : [-40.0dB] - - -			
3:BTFD2s0 14:DCP21540 25:F3P0s0 [18] DL_C31 4:BTFD3s0 15:DCP22540 26:F4P0s0 - 2.98dBm 5:D32T18s0 16:DCP23540 27:F5P0s0] Sc : [-8.3dB] 6:D32T28s0 17:D15DN8s0 28:0TD1s0] Sc : [-8.3dB] 7:D32T38s0 18:DL_C31 29:0TD2s0] Sc : [-40.0dB] 9:DAMR18s0 20:F1A0s0 31: Ower : [-8.3dB] 10:DAMR28s0 21:F1P0s0 32: ower : [-40.0dB]	Internal 11:DAMR38s0 22:F2A0s0 1:4Ps0 12:DCP11540 23:F2P0s0	Knob Step [1] [3.840 000Mcps]	
7:D32T38s0 [18:DL_C31 :29:0TD2s0] Sc : [-40.0dB] 8:D32T48s0 19:DL_INTR :30:PCHs0] Sc : [-40.0dB] 9:DAMR18s0 20:F1A0s0 31: ower : [-8.3dB] 10:DAMR28s0 21:F1P0s0 32: ower : [-40.0dB]	3:BTFD2s0 14:DCP21540 25:F3P0s0 4:BTFD3s0 15:DCP22540 26:F4P0s0 5:D32T18s0 16:DCP23540 27:F5P0s0	[<mark>18</mark>] DL_C31 - 2.98dBm	
ouer · I-44 MdR I	7:D32T3850 [18:DL_C31 29:OTD250 8:D32T4850 19:DL_INTR 30:PCH50 9:DAMR1850 20:F1A050 31:] Sc : [-40.0dB]] Sc : [-40.0dB] ower : [- 8.3dB] ower : [-40.0dB]	
Total Share : Symbol = 39 Wave = 125 ower : [-40.0dB] ower : [-40.0dB] ower : [-40.0dB]	Total Share : Symbol = 39 Wave = 125		

Slide 181 MG3681A-E-I-1

Uplink signal Setup example

UE transmitter test BS receiver test

- UL RMC 12.2 kbps
- UL RMC 64 kbps
- UL RMC 144 kbps
- UL RMC 384 kbps

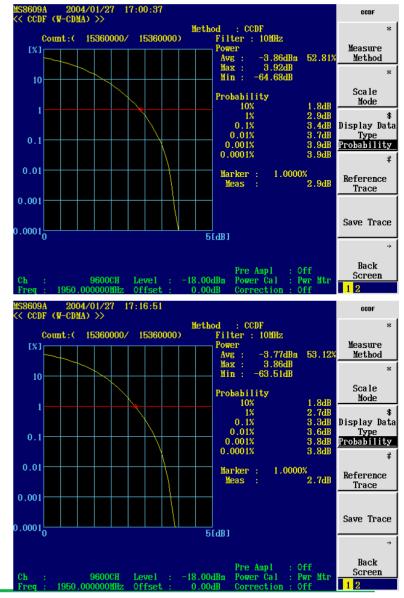
• ACP priority filter

- Transmitter test
- » Spectrum emission mask
- » ACLR
- » Spectrum emissions

	Pattern
Freq. 1922.500 000 00 MHz	
Level - 3.00 dBm Mem	
Normal	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]	
Internal : 11:ULRMC64k 22: Knob [1] 1:C168 12:ULLAMR#1 23: Step [3.840 000Mcps]	
2:C360 13:UL_AMR#2 24: Curson [0.22] 3:PRE 14:UL_AMR#3 25: [] [] ULRMC12k	
4:R168 15:UL_ISDN 26: <u>- 3.03dBm</u> 5:R360 16: 27: 6:SSDTa 17: 28:	
9:ULRMC144:20: 31: 10:ULRMC384:21: 32: 0wer : [-40.0dB] 0wer : [-40.0dB] 0wer : [-40.0dB]	
Total Share : Symbol = 3 Wave = 40ower : [-40.0dB] ower : [-40.0dB]	
AWGN : [Off] C/N : Wanted - Noise - Data (CH4) Clock/Trig PWR CONT Ref. Clock	1/0 Input
	CDMA(1/2)
Freq. 1922.500 000 00 MHz	→ Channel 1-3
Freq. 1922.500 000 00 MHz Level - 3.00 dBm Mem	
Level - 3.00 dBm Mem	1-3 Channel →
Level - 3.00 dBm Mem Normal Baseband : [0n] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-COMA] W-COMA Phase : [1] Simulation Link : [Up Link] Chip Rate : [3.840 000Mcps]	1-3 Channel →
Level - 3.00 dBm Mem Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [U-COMA] U-COMA Phase : [1]	1-3 Channel 4-8 Channel
Level - 3.00 dBm Mem Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [U-CDMA] U-CDMA Phase : [1] Simulation Link : [Up Link] Chip Rate : [3.840 000Mcps] Filter : [RNY0] Roll Off Ratio : [0.22] Filter Mode : [CCP] Pattern Select : [18] ULRMC12k Maximum Code Number : [2] Ch. 1 : [On] Power : [-46.dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB]	1-3 Channel 4-8 Channel 9-12 & Add. Cal
Level - 3.00 dBm Mem Normal Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [I] Simulation Link : [Up Link] H-CDMA Phase : [I] Chip Rate : [3.840 000Mops] Filter : [RNY0] Roll Off Ratio : [0.22] Filter Mode : [GOP] Pattern Select : [I8] ULRMC12k Maximum Code Number : [2] Output Level - 3.03dBm Ch. 1 : [On] Power : [-40.0dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 3 : [Off] Power : [-40.0dB] Ch. 4 : [On] Power : [-40.0dB] Ch. 5 : [Off] Power : [-40.0dB] Ch. 6 : [Off] Power : [-40.0dB] Ch. 7 : [Off] Power : [-40.0dB]	1-3 Channel 4-8 Channel 9-12 & Add.
Level - 3.00 dBm Mem. Normal Baseband : [On] 1/0 Mod. : [Int] Pulse Mod. : [Int] System : [W-CDMA] W-CDMA Phase : [1] Simulation Link : [Up Link] Chip Rate : [3.840 000Mcps] Filter : [RNYQ] Roll Off Ratio : [0.22] Filter Mode : [009] Pattern Select : [18] ULRTC12k Maximum Code Number : [2] Output Level - 3.03dBm Ch. 1 : [On] Power : [-40.0dB] Ch. 2 : [Off] Power : [-40.0dB] Ch. 4 : [On] Power : [-40.0dB] Ch. 5 : [Off] Power : [-40.0dB] Ch. 4 : [On] Power : [-40.0dB] Ch. 5 : [Off]	1-3 Channel 4-8 Channel 9-12 & Add. Cal

/inritsu

Slide 182 MG3681A-E-I-1

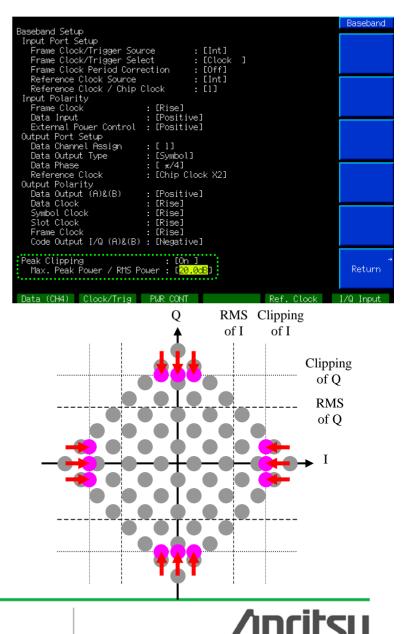

CCDF

• UL RMC

» 12.2 kbps

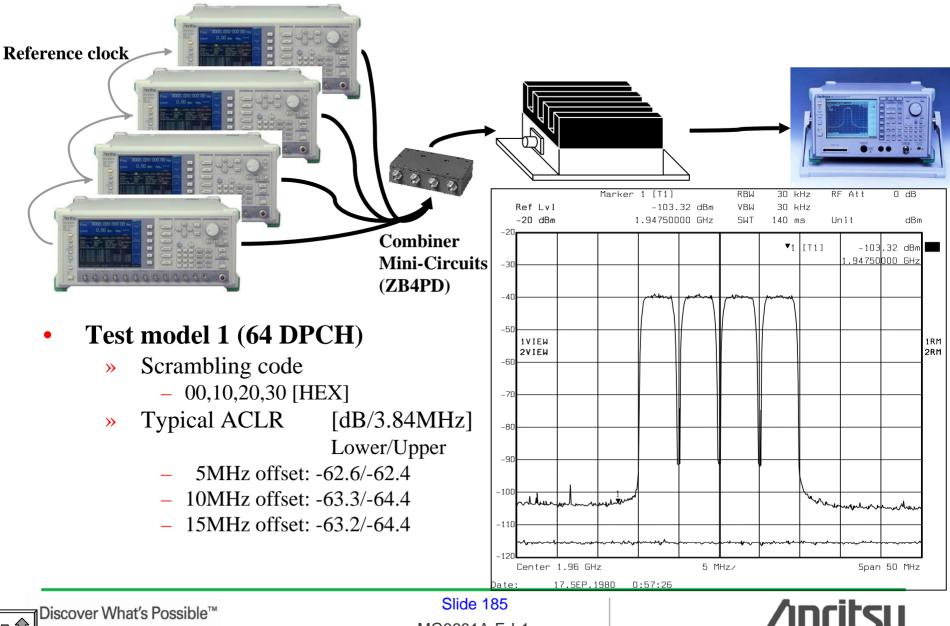
	Parameter	I	CH C	Unit			
DPDCH	Information bit rate	12,2/2,4	64/2,4	144/2,4	384/2,4	2048/2,4	kbps
	Physical channel	60/15	240/15	480/15	960/15	960/15	kbps
	Spreading factor	64	16	8	4	4	
	Repetition rate	22/22	19/19	8/9	-18/-17	-7/-7	%
	Interleaving	20	40	40	40	80	ms
	Number of DPDCHs	1	1	1	1	6	
DPCCH	Dedicated pilot		bit/slot				
	Power control		bit/slot				
	TFCI		bit/slot				
	FBI		bit/slot				
	Spreading factor			256			
Power rat DPCCH/D		-2,69	-5,46	-9,54	-9,54	-9,54	dB
Amplitude DPCCH/E		0,7333	0,5333	0,3333	0,3333	03333	
Note: Combination of TFCI bit of 0 bit/slot and FBI bit of 2 bit /slot is applied in test of Site Selection Diversity Transmission specified in 8.10.							of Site

» 384 kbps


/inritsu

Discover What's Possible™

Slide 183 MG3681A-E-I-1


Peak Clipping of modulation signal Setup example

- Useful for the evaluation of crest factor (CCDF)
 - Limiting the peak level of I/Q amplitude before FIR filtering
 - I or Q RMS level
 - +
 - $0 \sim 20 \text{ dB}, 0.1 \text{ dB}$ resolution
 - Measure CCDF of output signal (after FIR filtering) by signal analyzer (MS8608A/09A), and adjust the level to limit.
 - ACLR of output signals is not deteriorated because of no distortion caused by clipping.
 - Extreme clipping deteriorates waveform quality.
 - » Scalar clipping
 - Limiting I or Q amplitude level

Slide 184 MG3681A-E-I-1

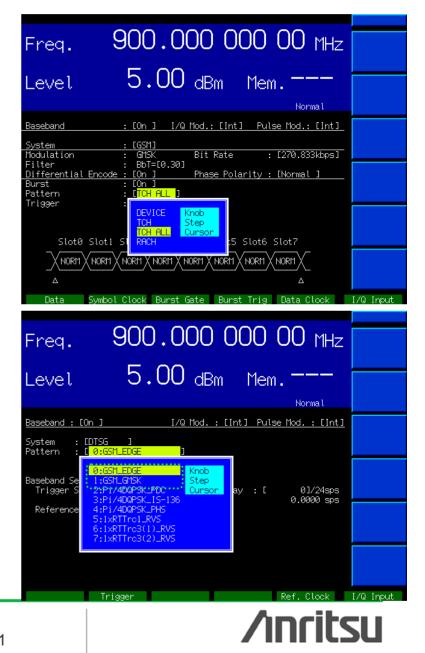

Multi-carrier signal source

MG3681A-E-I-1

GSM/EDGE

RF/IF components test Connection example

Slide 186 MG3681A-E-I-1


Downlink/Uplink signal Setup example

• MX368012A

- » GMSK modulation
 - Data + GP ^{Guard period} (8.25 symbol)
 Burst format
 - Normal burst format for TCH
 - Access burst format for RACH
 - Continuous modulation format

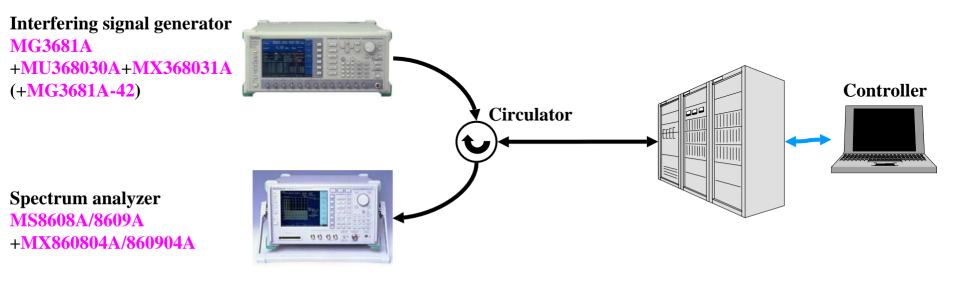
MX368031A

- » 8PSK modulation
 - Continuous modulation format
- » GMSK modulation
 - Continuous modulation format

Discover What's Possible™

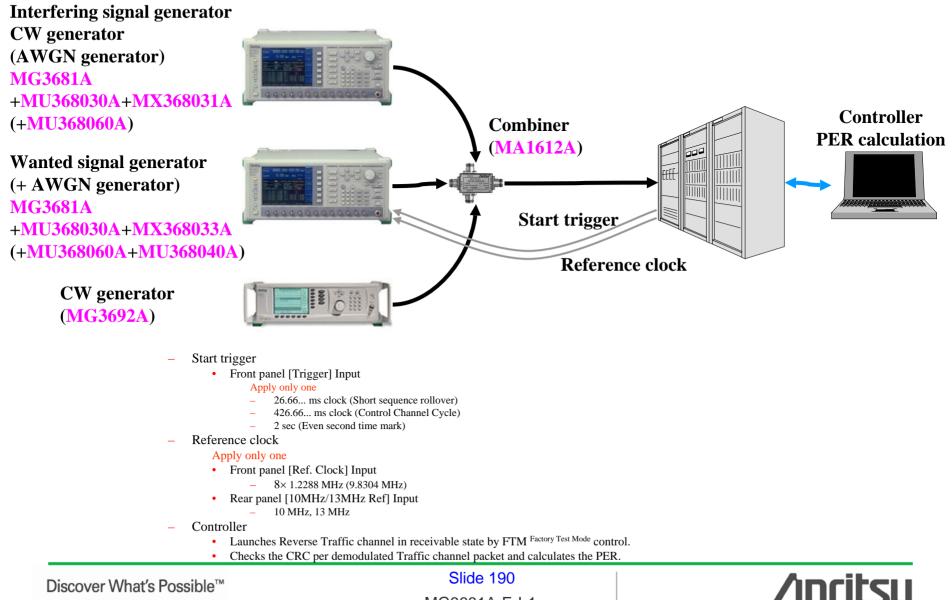
Slide 187 MG3681A-E-I-1

CDMA2000 1xEV-DO ^{3GPP2} AN ^{Access Network} testing


3GPP2 C.S0032 -0 v2.0

- 3.1.1 Receiver Minimum Standards
- 3.1.1 Transmitter Minimum Standards

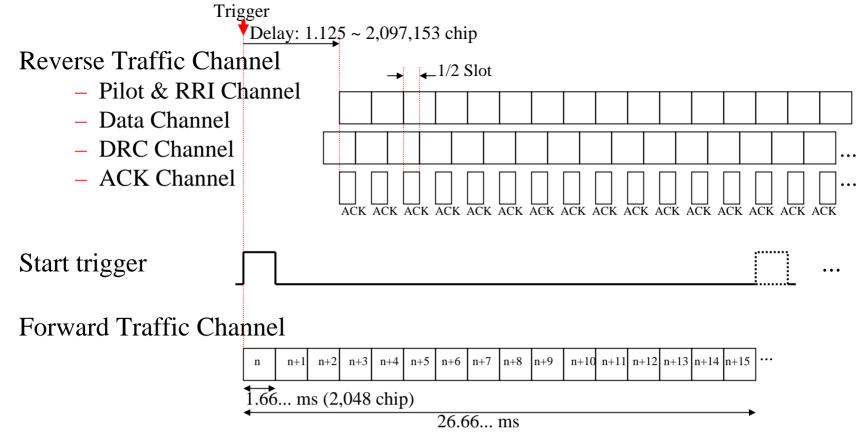
Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
3.1.1.3.1	Data Channel Demodulation Performance (Case 1: without closed loop power control)				+MU368060A +MU368040A	
3.1.1.4.1	Receiver Sensitivity					
3.1.1.4.2	Receiver Dynamic Range				+MU368060A +MU368040A	
3.1.1.4.3	Single Tone Desensitization		MG3681A or 3GHz	MG3642A 2.08GHz		
3.1.1.4.4	Intermodulation Spurious Response Attenuation	- MG3681A +MU368030A +MX368033A	MG3681A			
3.1.1.4.5	Adjacent Channel Selectivity		MG3681A +MU368030A +MX368031A			MA1612A _{3GHz}
3.1.1.4.6	Receiver Blocking Characteristics		MG3681A or 3GHz	MG3692A 20GHz Or MG3642A 2.08GHz		Combiner
3.1.1.6	Received Signal Quality Indicator (RSQI)				+MU368060A +MU368040A	
3.1.2.4.3	Inter-Sector Transmitter Intermodulation		MG3681A +MU368030A +MX368031A (+MG3681A-42)			Spectrum analyzer Circulator


Inter-Sector Transmitter Intermodulation test Connection example

- Controller
 - Launches in the transmitting state by FTM Factory Test Mode control.

Slide 189 MG3681A-E-I-1

Receiver test Connection example



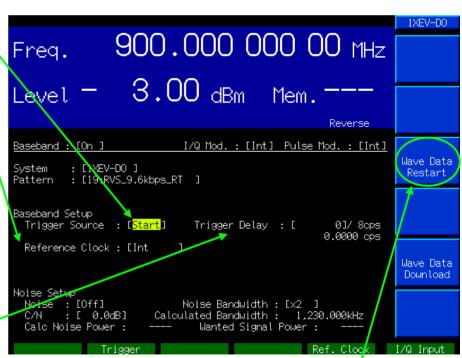
MG3681A-E-I-1

Timing synchronization Setup example

Start trigger delay

» Set the timing to which AN can receive Reverse Traffic channel

Slide 191 MG3681A-E-I-1


Timing sync. Setup example

- Setting External Start trigger
 - » Captures/ Synchronizes the Trigger only once
- Reference clock:
 - » [Ref. Clock] Input applicable case
 - Reference Clock : [Ext(TTL)]
 - 8× 1.2288 MHz (9.8304 MHz)
 - » [10MHz/13MHz Ref] Input applicable case
 - Reference Clock : [Int]
- Start trigger delay
 - » 0 ~ 16,777,215 /8 chip 1/8 chip resolution
 - » Delay from Trigger
 - + 9/8 chip
 - 1.125 ~ 2,097,153 chip

Trigger recapture/ synchronization

Slide 192 MG3681A-E-I-1

Anritsu

Long Code Mask sync.

• Reverse Traffic Channel Long Code Mask

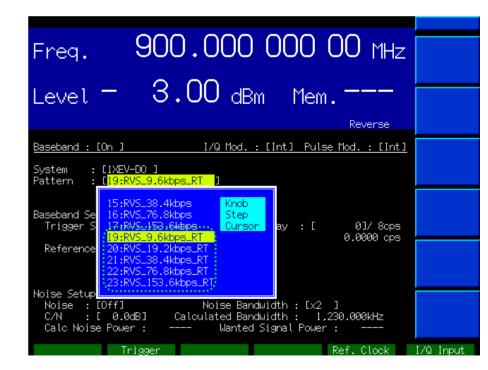
» 42-bit MI_{RTCMAC}

					1.			<u> </u>			
BIT	41	40	39	38	37	36	35	4	33	V.	$\begin{array}{c} 31\\ 31\\ 29\\ 29\\ 29\\ 29\\ 22\\ 22\\ 25\\ 22\\ 25\\ 22\\ 22\\ 22\\ 22\\ 22$
MI _{RTCMAC}	1	1	1	1	1	1	1	1	1	1	Permuted (ATI _{LCM})

- » 42-bit MQ_{RTCMAC}
 - Derived from MI_{RTCMAC}
 - $MQ_{RTCMAC}[k] = MI^{RTCMAC}[k-1],$ for k = 1,...,41
 - $MQ_{RTCMAC}[0] = MI_{RTCMAC}[0] \oplus MI_{RTCMAC}[1] \oplus MI_{RTCMAC}[2] \oplus MI_{RTCMAC}[4] \oplus MI_{RTCMAC}[5] \oplus MI_{RTCMAC}[6] \oplus MI_{RTCMAC}[9] \oplus MI_{RTCMAC}[15] \oplus MI_{RTCMAC}[16] \oplus MI_{RTCMAC}[17] \oplus MI_{RTCMAC}[18] \oplus MI_{RTCMAC}[20] \oplus MI_{RTCMAC}[21] \oplus MI_{RTCMAC}[24] \oplus MI_{RTCMAC}[25] \oplus MI_{RTCMAC}[26] \oplus MI_{RTCMAC}[30] \oplus MI_{RTCMAC}[32] \oplus MI_{RTCMAC}[34] \oplus MI_{RTCMAC}[41]$

- \oplus : XOR

• Setting AN


»	MI _{RTCMAC}	3FF00000000
»	MQ _{RTCMAC}	3FE00000001

Wanted signal generator Setup example

Reverse Traffic Channel

Data Rate

- » 9.6 kbps
- » 19.2 kbps
- » 38.4 kbps
- » 76.8 kbps
- » 153.6 kbps

Interfering signal generator

Setup example

900.000 000 00 MHz

Mem. -

I/Q Mod. : [Int] Pulse Mod. : [Int]

: [

Reverse

0]/ 8cps 0.0000 cps

3.00 dBm

Step

Cursor

HRPD signal

- CDMA2000 1xEV-DO **Reverse Traffic Channel**
- Adjacent Channel Selectivity **»** test

Sector 2 (Interferer)

Inter-Sector Transmitter 11

Intermodulation test		Trigger		Ref. Clock	I/Q Input
Freq. 900.000 000 00 MHz	MS80	KR 1.930 094GHz	DDN 201-0	z SWT 105ms	Adj ch Pwr ACP Freq
Level - 3.00 dBm Mem	Re	ef Level -10.00dBm 0dB/ L1:-73.42 U1:-73.79 L2:-73.42 U2:-73.79	MANAM	DET Pos Peak Trace-A	Ch Sepa-1 2.50000MHz
Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]					Ch Sepa-2 2.50000MHz
System : [DTSG] Pattern : [<mark>11:1xEV-D0_FWD]</mark> 7:1xRTTrc3(2)_RVS Knob					Ch Sepa-3 2.50000MHz
Baseband Se 8:1:RTTro3(3).RVS Step Trigger S 9:1:RTTro1-2_FWD Cursor 10:1:RTTro3-5_FWD 0.0000 cps Reference 11:1:KEV-D0_FWD 12:1:XEV-D0_FWD 12:1:XEV-D0_FWD 15:1:XEV-D0_FWD 14:1:XEV-D0_FWD		ensterillywellensisze Alleinerskie Milykowi		N ^{ha} ilianjingez <mark>hili</mark> gatogoa	Ch BW 1.23000MHz Inband Ch BW 1.23000MHz
	A	enter 1.930 000GHz ttenuator = 2dB e Ampl OFF		Span 6.250MHz Band O	return
Discover What's Possible™	Slide 195			hncit	

MG3681A-E-I-1

Frea.

. attern

Baseband S

Trigger

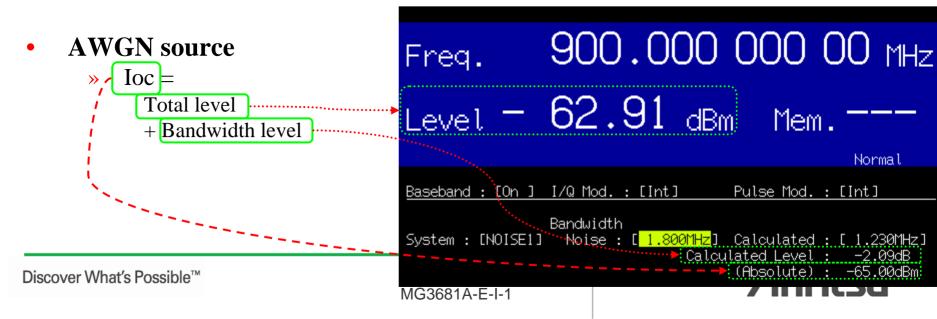
Reference

Level =

Raseband : [On]

EDTSG

AWGN generator


• AWGN mixing

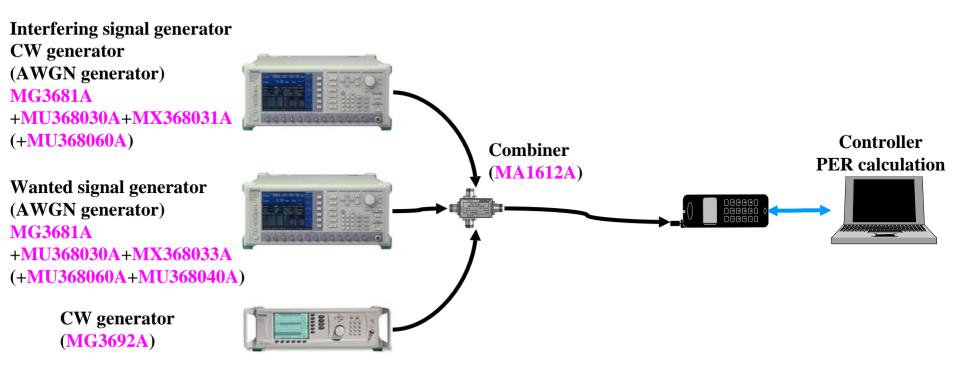
- \sim C/N = Wanted signal/AWGN
 - Dynamic range test
 - C/N: [1.2dB] Wanted -63.8dBm Noise -65.0dBm
 - RSQI test
 - C/N: [1.0dB]

Wanted -83.0dBm Noise -84.0dBm (Data rate: 153.6 kbps, Data E_b/N_t : 8 dB, DataChannelGain: 18.5 dB) <u> \hat{I}_{or} = \underline{E}_b Data rate <u>1+ChannelGain</u> $I_{oe} = N_t \times 1.23 \times 10^6 \times$ ChannelGain</u>

Setup example

Freq. 900.000 000 00 MHz	1XEV-DO
Level – 59.53 dBm Mem. ––– Reverse	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [IXEV-D0]] Pattern : [23:RVS_153.6kbps_RT]	Wave Data Restart
Baseband Setup Trigger Source : [Int] Trigger Delay : [0]/8cps 0.0000 cps Reference Clock : [Int]	Wave Data Download
Noise Setup AWGN : [On] C/N : [1.2dB] Wanted: -63.80dBm Noise: -65.00dBm Noise Bandwidth : [CalcBW x2] Calculated Bandwidth : 1.230MHz	
Trigger Ref. Clock	I/Q Input

CDMA2000 1xEV-DO ^{3GPP2} AT Access Terminal testing


3GPP2 C.S0033 -0 v2.0

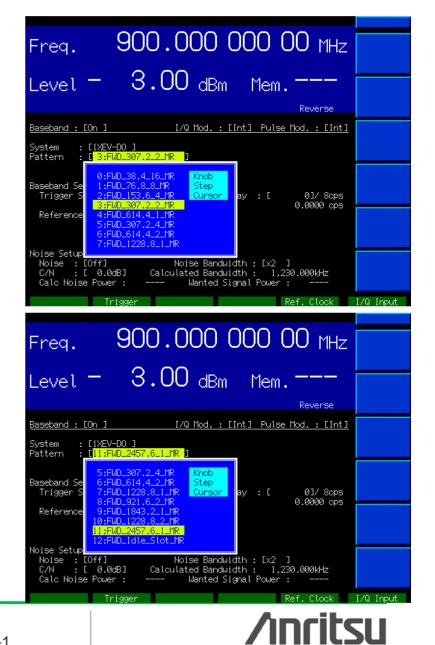
3.1.1 Receiver Minimum Standards

_						
Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
3.1.1.2.1	Demodulation of Forward Traffic Channel in AWGN				+MU368060A +MU368040A	
3.1.1.2.2	Demodulation of Forward Traffic Channel in Multipath Fading Channel				MG3681A +MU368060A	Channel simulator, Combiner
3.1.1.3.1	Receiver Sensitivity and Dynamic Range					
3.1.1.3.2	Single Tone Desensitization	MG3681A	MG3681A or 3GHz	MG3642A 2.08GHz		
3.1.1.3.3	Intermodulation Spurious Response Attenuation	+MU368030A	MG3681A]		
3.1.1.3.4	Adjacent Channel Selectivity	+MX368033A	MG3681A +MU368030A +MX368031A			MA1612A _{3GHz}
3.1.1.4.5	Receiver Blocking Characteristics		MG3681A or _{3GHz}	MG3692A 20GHz Or MG3642A 2.08GHz		Combiner

Receiver test Connection example

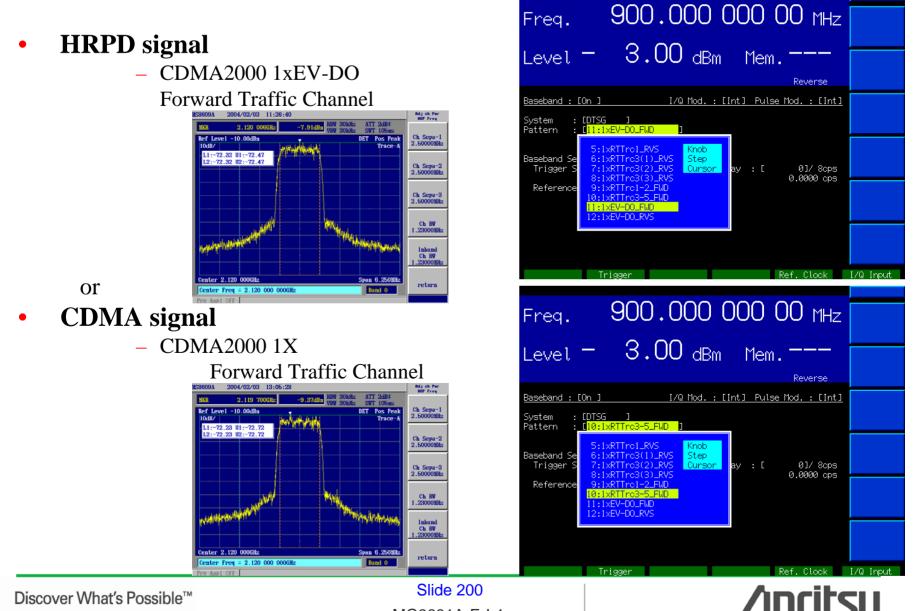
- Controller
 - Launches Forward Traffic channel in receivable state by FTM Factory Test Mode control.
 - Checks the CRC per demodulated Traffic channel packet and calculates the PER.

Discover	What's Possible™
----------	------------------


Slide 198 MG3681A-E-I-1

Wanted signal generator Setup example

Forward Traffic Channel

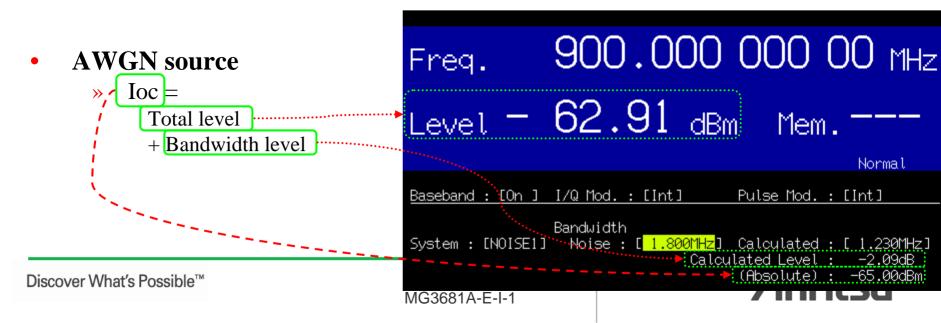

	Data Rate	Slots per
	Phy	sical Layer Packet
»	38.4 kbps	16
»	76.8 kbps	8
»	153.6 kbps	4
»	307.2 kbps	2
»	614.4 kbps	1
»	307.2 kbps	4
»	614.4 kbps	2
»	1,228.8 kbps	1
»	921.6 kbps	2
»	1,843.2 kbps	1
»	1,228.8 kbps	2
»	2,457.6 kbps	1
	-	

Slide 199 MG3681A-E-I-1

Interfering signal generator

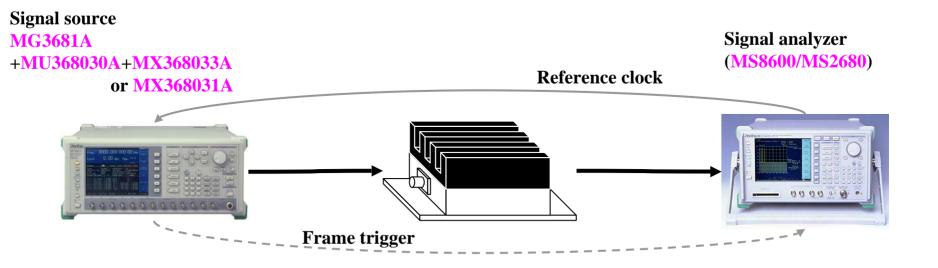
Setup example

MG3681A-E-I-1


AWGN generator

Setup example

• AWGN mixing


- \sim C/N = Wanted signal/AWGN
 - Demodulation of FTC in AWGN test
 - C/N: Îor/Ioc

Freq. 900.000 000 MHz	1XEV-DO
Level – 54.74 dBm Mem. ––– Reverse	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [IXEV-DO]] Pattern : [I1:FWD_2457.6_1_MR]]	Wave Data Restart
Baseband Setup Trigger Source : [Int] Trigger Delay : [0]/8cps 0.0000 cps Reference Clock : [Int]	
Noise Setup	Wave Data Download
AWGN : EON] C/N : [15.4dB] Wanted: -55.00dBm Noise: -70.40dBm Noise Bandwidth : [CalcBW x2] Calculated Bandwidth : 1.2301Hz	
Trigger Ref. Clock	I/Q Input

RF/IF components test

Connection example

- Frame trigger
 - Required when performing modulation analysis of Reverse signal by MS8608A/8609A
 - Because, it cannot catch Pilot Channel when DataChannelGain is high.
 - Rear panel A4[Frame Trigger] or B2[Sequence Pulse] Output
 - To MS8608A/8609A rear panel [Trigger] Input
 - 26.66... ms clock

e] Output	9.6	3.75 6.75				
	19.2					
	38.4	9.75				
	76.8	13.25				
	153.6	18.50				
			· · ·			
	Field	Value (Decimal)				
DRCLength	Field	Value (Decimal) 0 (1 slot)				
DRCLength DRCChannel						
	Gain	0 (1 slot)				

Rate (kbps)

DataChannelGain (dB)

Slide 202 MG3681A-E-I-1

Forward signal Setup example

AN transmitter test AT receiver test

• MX368033A

Active Slot: 8,4,3,2,1 carrier
 2,457.6 kbps, 16QAM

1/2 Slot					1/2 Slot					
1,024 Chips					1,024 Chips					
Data	MAC	Pilot	MAC	Data	Data	MAC	Pilot	MAC	Data	
400	64	96	64	400	400	64	96	64	400	
Chips	Chips	Chips	Chips	Chips	Chips	Chips	Chips	Chips	Chips	
				Activ	a Slot					

» Idle Slot: 8,4,3,2,1 carrier

– Burst signal

Idle Slot

• MX368031A

MAC

64

Chip

- » Active Slot: single carrier
 - 2,457.6 kbps, 16QAM

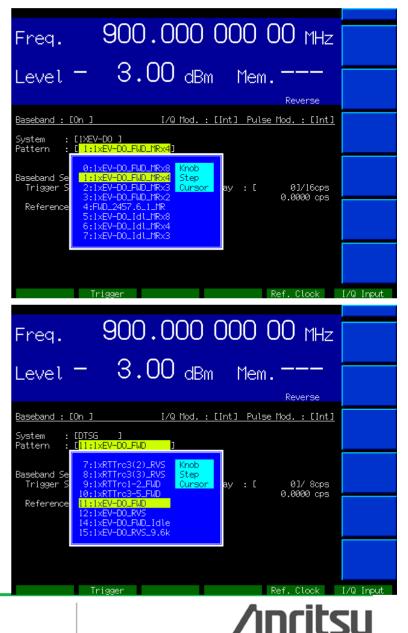
MAC

64

Chips

Pilot

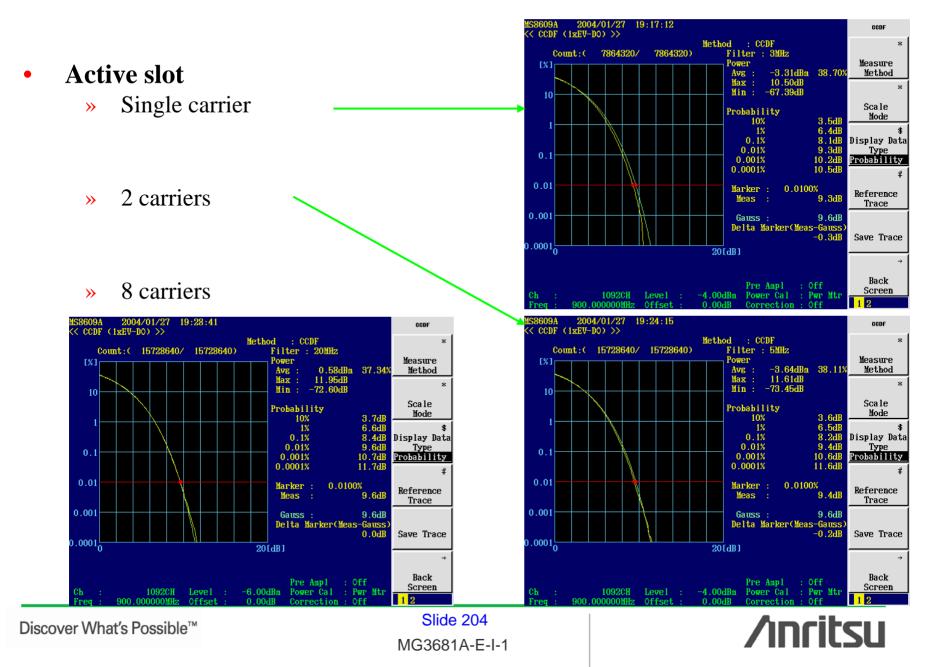
96


Chips

MAC

64

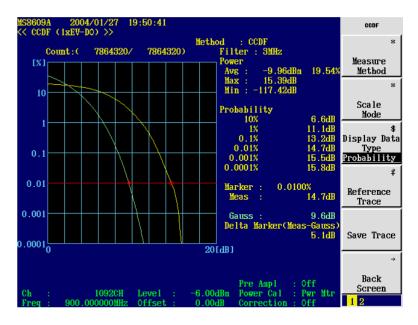
Chips


- » Idle Slot: single carrier
 - Burst signal

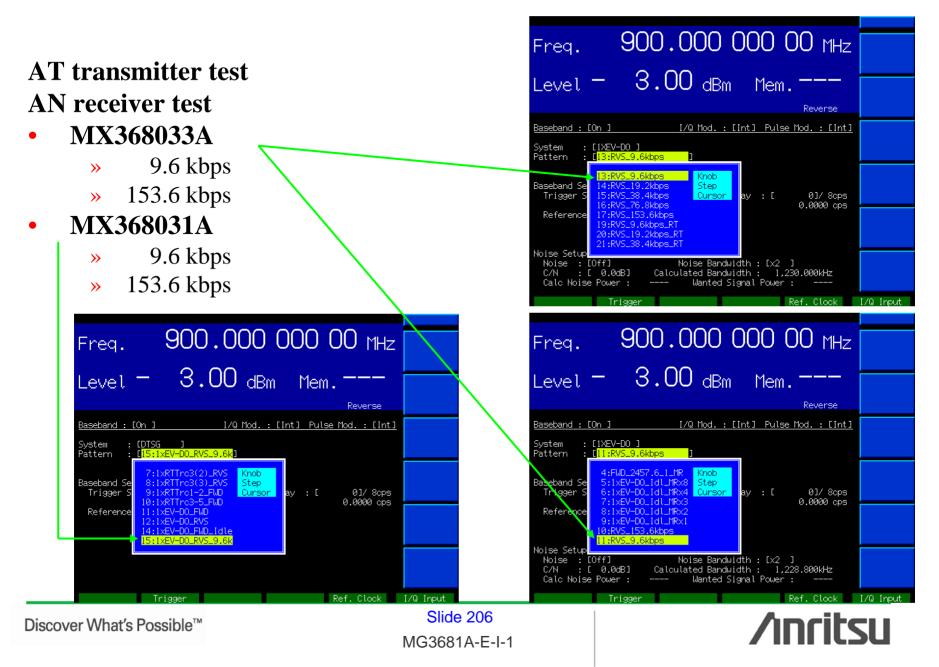
Discover What's Possible™

Slide 203 MG3681A-E-I-1

CCDF


CCDF

- » Single carrier
 - Mean power of the ensemble
 - average \approx

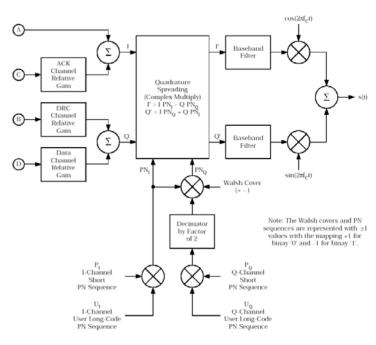

Mean power of the Pilot/MAC channel ensemble average

- 6.6 dB

/inritsu

Reverse signal Setup example

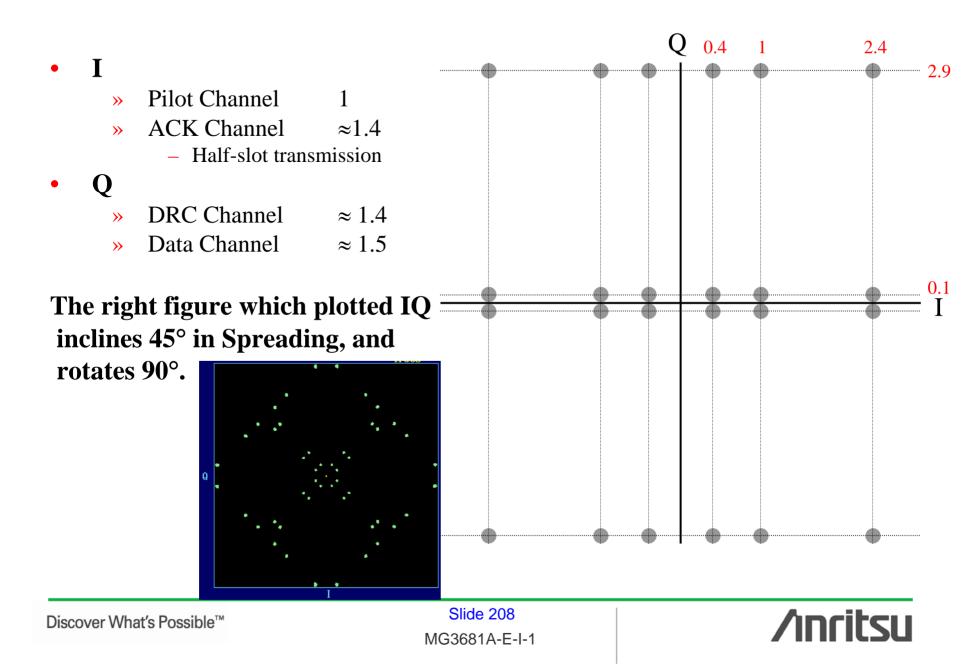
Investigation of Reverse signal (9.6 / 153.6 kbps)

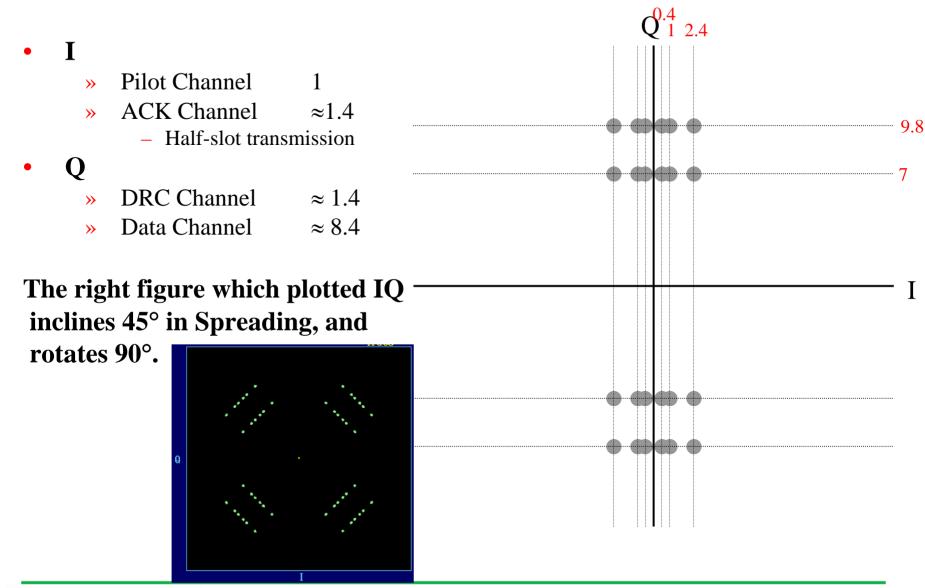

• I

- » Pilot Channel 0 dB
- » ACK Channel 3 dB

• Q

- » DRC Channel
- » Data Channel

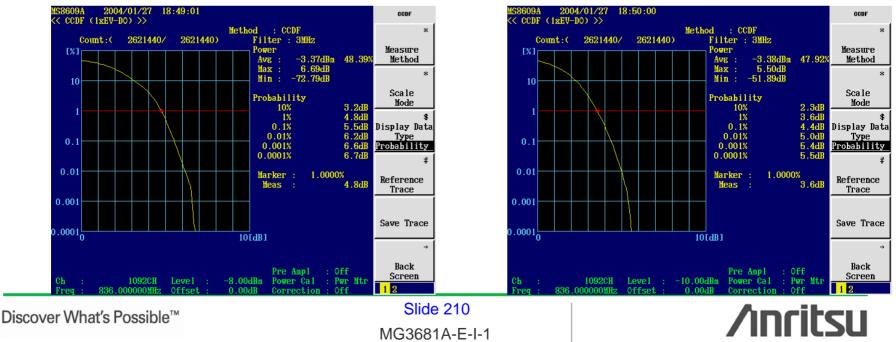

3 dB 3.75 dB (9.6 kbps) 6.75 dB (19.2 kbps) 9.75 dB (38.4 kbps) 13.25 dB(76.8 kbps) 18.5 dB (153.6 kbps)



Slide 207 MG3681A-E-I-1

9.6 kbps Constellation

153.6 kbps Constellation



Discover What's Possible™

Slide 209 MG3681A-E-I-1

CCDF

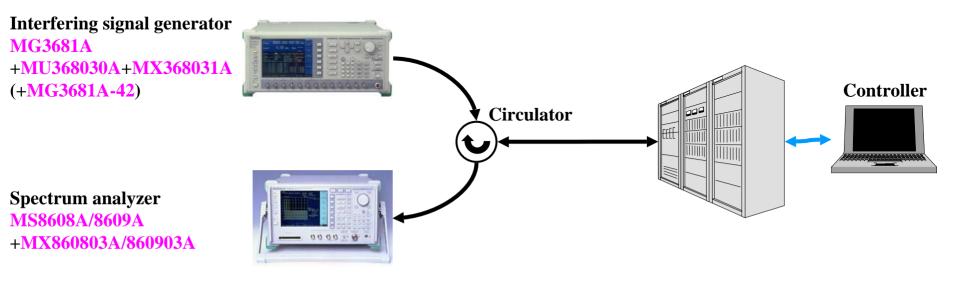
- On the result of Constellation, 9.6kbp side tends to generate the peak.
- Although specified that ρ test is 9.6 kbps and Spurious test is 153.6 kbps in 3GPP2, it is necessary to consider also 9.6 kbps which the peak tends to generate.

153.6 kbps

9.6 kbps

ٔÚ

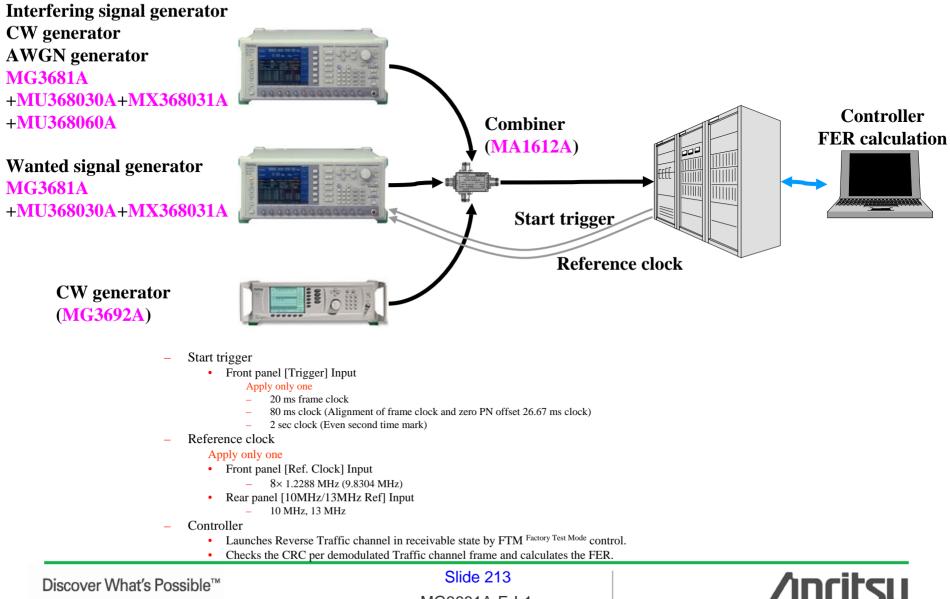
CDMA2000 1X ^{3GPP2} BS testing


3GPP2 C.S0010 -B v1 3 Receiver M

- Receiver Minimum Standards
- 4 Transmitter Minimum Standards

Section	Test	Wanted signal generator	Interfering signal generator	CW generator	AWGN generator	Others
3.4 3.4.1	Reverse Traffic Channel Demodulation Performance Performance in AWGN				MG3681A +MU368060A	MA1612A ^{3GHz} Combiner
3.5.1	Receiver Sensitivity					
3.5.2	Receiver Dynamic Range				MG3681A +MU368060A	
3.5.3	Single Tone Desensitization		MG3681A or 3GHz	MG3642A 2.08GHz		
3.5.4	Intermodulation Spurious Response Attenuation	MG3681A	MG3681A	2.000112		
3.5.5	Adjacent Channel Selectivity	+MU368030A +MX368031A	MG3681A +MU368030A +MX368031A			MA1612A _{3GHz}
3.5.6	Receiver Blocking		MG3681A or 3GHz	MG3692A 20GHz Or MG3642A 2.08GHz		Combiner
3.7	Received Signal Quality Indicator (RSQI)				MG3681A +MU368060A	
4.4.3	Inter-Base Station Transmitter Intermodulation		MG3681A +MU368030A +MX368031A (+MG3681A-42)			Spectrum analyzer Circulator

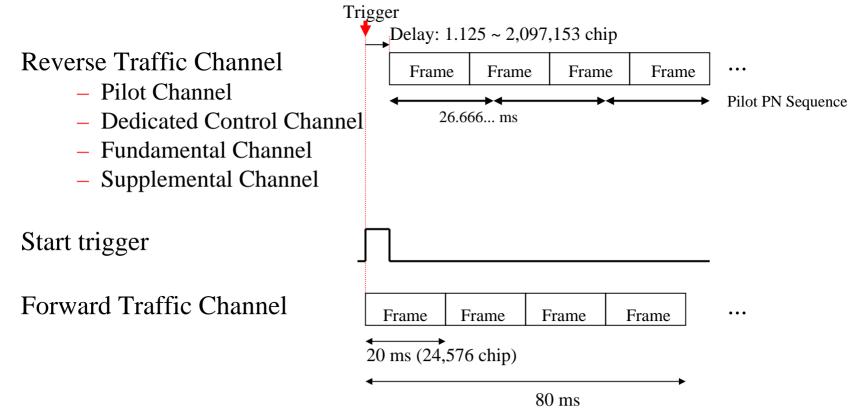
/inritsu


Inter-Base Station Transmitter Intermodulation test Connection example

- Controller
 - Launches in the transmitting state by FTM Factory Test Mode control.

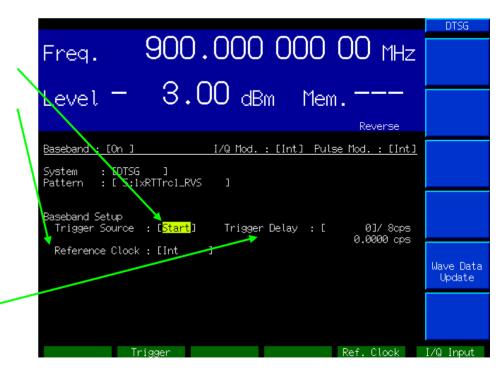
Slide 212 MG3681A-E-I-1

Receiver test Connection example

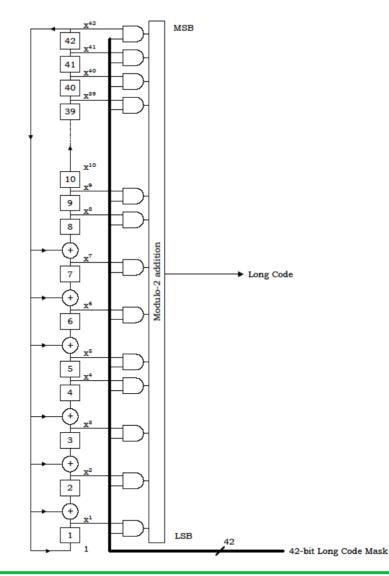


MG3681A-E-I-1

Timing synchronization Setup example


Start trigger delay

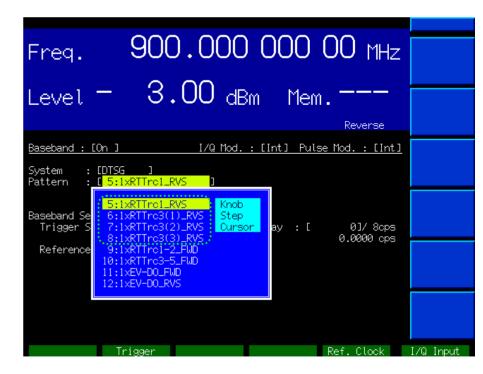
» Set the timing to which MS can receive Reverse Traffic channel


Timing sync. Setup example

- Setting External Start trigger
 - Captures/ Synchronizes the Trigger only once
- Reference clock:
 - » [Ref. Clock] Input applicable case
 - Reference Clock : [Ext(TTL)]
 - 8× 1.2288 MHz (9.8304 MHz)
 - » [10MHz/13MHz Ref] Input applicable case
 - Reference Clock : [Int]
- Start trigger delay
 - » 0 ~ 16,777,215 /8 chip 1/8 chip resolution
 - » Delay from Trigger
 - + 9/8 chip
 - 1.125 ~ 2,097,153 chip

Long Code Mask sync.

- Reverse Traffic Channel Long Code Mask
 - » 42-bit PN sequence
- Setting BS
 - » 0000000000



Wanted signal generator Setup example

Test Mode	Forward Traffic Channel Radio Configuration	Reverse Traffic Channel Radio Configuration							
1	1								
2	2	2							
3	3	3							
4	4	3							
5	5	4							
6	6	5							
7	7	5							
8	8	6							
9	9	6							

• **Reverse Traffic Channel**

Interfering signal generator

Setup example

900.000 000 00 MHz

I/Q Mod. : [Int] Pulse Mod. : [Int]

: [

Reverse

0]/ 8cps 0.0000 cps

3.00 dBm Mem. -

Step

- RC 3 signal
 - » Adjacent Channel Selectivity test

External Base Station

» Inter-Sector Transmitter Intermodulation test

		Inigger	Ret. Clock	174 Input
		MS8609A 2004/02/03 10:27:01		Adj ch Pwr ACP Freq
Freq. 900.000 000 M	Hz		1.40dBm RBW 30kHz ATT 2dB# VBW 30kHz SWT 105ms	Ch Come 1
0.00		Ref Level -10.00dBm 10dB/	DET Pos Peak Trace-A	Ch Sepa-1 2.50000MHz
Level - 3.00 dBm Mem		L1:-72.76 U1:-72.97 L2:-72.76 U2:-72.97		01 0 0
Revers	e			Ch Sepa-2 2.50000MHz
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]			01 0 0
System : [DTSG] Pattern : [<mark>10:1xRTTrc3-5_FWD]</mark>				Ch Sepa-3 2.50000MHz
Baseband Se 6:1xRTTro1_RVS Knob		a shine	bath	Ch BW
Trigger S 7:1xRTTrc3(2)_RVS Cursor ay : [0]/8 8:1xRTTrc3(3)_RVS 00000 00.0000		Jank M III	MAN AND A CONTRACT OF A CONTRACT	1.23000MHz
Reference 9:1xRTTrc1-2_FWD 10:1xRTTrc3-5_FWD		Manufacture and a second second		Inband
11:1×EV-D0_FWD 12:1×EV-D0_RVS				Ch BW 1.23000MHz
		Center 1.930 000GHz	Span 6.250MHz	
			Band 0	return
Trigger Ref. Cloc	k 🛛 I/Q Input	Pre Ampl OFF		
Discover What's Possible™	Slide 218		/inrits	511
	MG3681A-E-I-1			JU

Frea.

Pattern

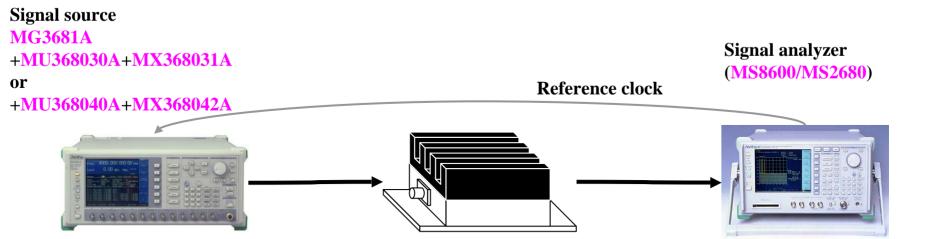
Baseband S

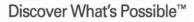
Triager

Referenc

Level =

Baseband : [On]


: [DTSG] : [7:1xRTTrc3(2)_RVS]


AWGN generator Setup example

• AWGN source » /Ioc = Total leve	el]+Bandwidth level	
Freq.	900.000 000 00 MHz	AWGN
Level —	62.91 dBm Mem	
<u>Baseband : [On]</u> System : [NO I SE1	I/Q Mod. : [Int] Pulse Mod. : [Int] Bandwidth] Noise : [1.800MHz] Calculated : [1.230MHz] Calculated Level : -2.09dB (Absolute) : -65.00dBm	
Discover What's Possible™	Slide 219 MG3681A-E-I-1	

RF/IF components test

Connection example

Slide 220 MG3681A-E-I-1

Forward signal Setup example

Frea.

Level - 3.00 dBm

BS transmitter test **MS receiver test**

MX368031A

- RC 1/2 >>
- RC 3/4/5 **>>**

Table 6.5.2-3. Base Station Test Model. General

Channel Type	Relative Power					1×EV-DO_FWD······* 1×EV-DO_RVS		
Pilot	0.2 of total power (linear)						
Sync+Paging+Traffic	Remainder (0.8) of	total power (linear)				「rigger		Ref
Sync	3 dB less than one Channel; always 1/	Fundamental Traffic /8 rate		F	req.	900.000		
Paging	3 dB greater than one Fundamental Traffic Channel; full rate only					1.00 d		
Traffic	Equal power in eac Channel; full rate o	h Fundamental Traffic only			aseband : [On]		. : [Int] Pulse	-
MX3680		req. 900.000 0 evel - 2.00 dBm		IS-96(1/2) Sy Fi	/stem : [<mark>IS-95</mark>] ilter : [SPEC+E	Link : [Forward] Q] α : - 9] PCB : [Off]		.228

I/Q Mod. : [Int] Pulse Mod. : [Int]

Output Level = 2.01dB

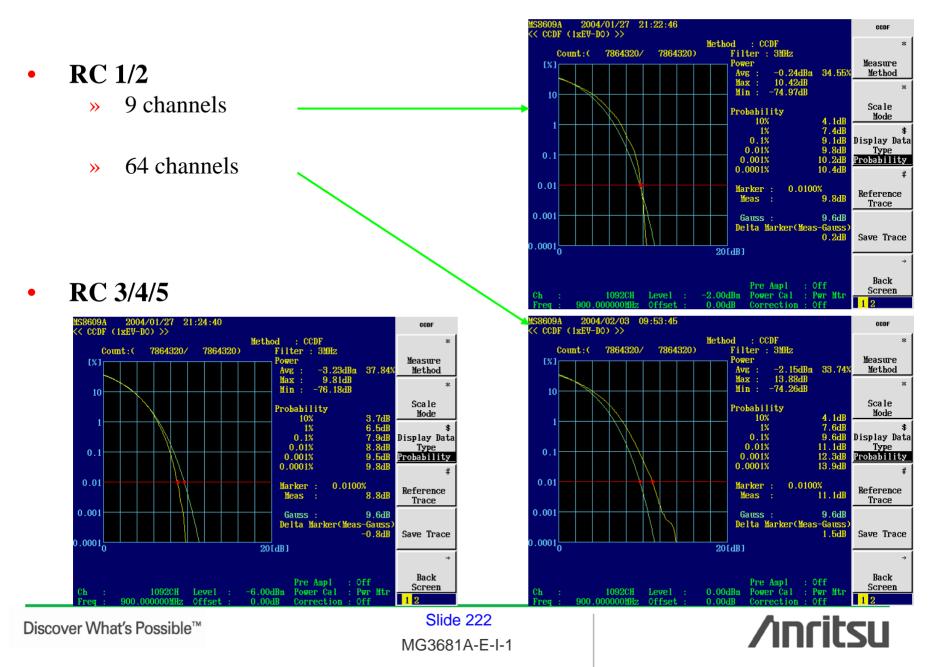
IRP

Link : [Forward] Chip Rate : [1.228 800Mops]

E COFFI

- **RC** 1 **>>**
- **RC** 2 **>>**

Discover What's Possible™


Reverse I/Q Mod. : [Int] Pulse Mod. : [Int] Baseband : [On] : [DTSG] : [<mark>10:1xRTTrc3-5_FWD </mark>] Pattern Step Baseband S 0]/ 8cps 0.0000 cps Trigger Cursor av : E Reference Clock I/Q Input 15-95(1/2 <u>O</u> MHz <mark>On</mark> Off OCNS Revense d. : [Int] Code Power 8 800Mcps] 1.03dBm TTTTTT Pilot , On , - 7.0dB, Rate Set 1, FullRate IZO Inpu

900.000 000 00 MHz

Mem. -

MG3681A-E-I-1

CCDF

Reverse signal Setup example

Slide 223

MG3681A-E-I-1

MS transmitter test BS receiver test

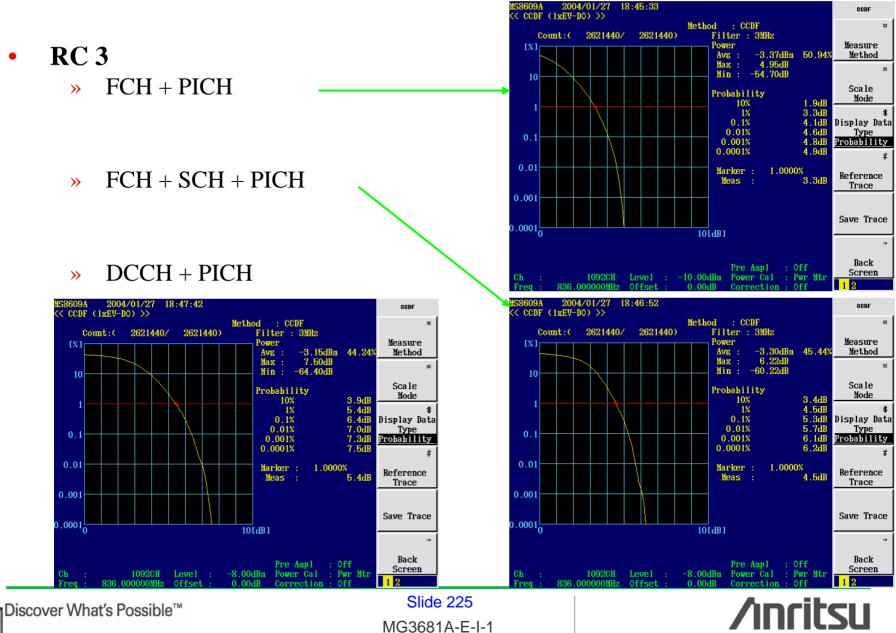
• MX368031A

- » RC 1
- » RC 3
 - FCH + PICH
 - FCH + SCH + PICH
 - DCCH + PICH
- MX368042A
 - » RC 1

Freq. 900.000 000 00 MHz
Level - 3.00 dBm Mem
Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]
Svstem : [DTSG]
Pattern : [5:1xRTTrc1_RVS]
5:1xRTTrc1_RVS Knob Baseband Se 6:1xRTTrc3(1)_RVS Step Trigger S 7:1xRTTrc3(2)_RVS Cursor ay : [0]/ 8cps
8:1xRTTrc3(3)_RV5 0.0000 cps Reference 9:1xRTTrc1-2_FWD
10:1xRTTrc3-5_FWD 11:1xEV-DO_FWD
12:1×EV-D0_RV5
Trigger Ref. Clock I/Q Input
IS-95(1/2)
Freq. 842.650 000 00 MHz
Level 0.00 dBm Mem
Level 0.00 dBm Mem
Level 0.00 dBm Mem Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]
Level 0.00 dBm Mem
Level 0.00 dBm Mem Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [IS-95] Link : [Reverse] Chip Rate : [1.228 800Mcps]
Level O.OO dBm Mem
Level O.OO dBm Mem
Level O.OO dBm Mem. Reverse <u>Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]</u> System : [IS-95] Link : [Reverse] Chip Rate : [1.228 800Mcps] Filter : [SPEC] α : - Traffic, Data Rate : FullRate Output Level 0.00dBm
Level O.OO dBm Mem. Reverse <u>Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int]</u> System : [IS-95] Link : [Reverse] Chip Rate : [1.228 800Mcps] Filter : [SPEC] α : - Traffic, Data Rate : FullRate Output Level 0.00dBm
Level O.OO dBm Mem. Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [IS-95] Link : [Reverse] Chip Rate : [1.228 800Mcps] Filter : [SPEC] a : - Traffic, Data Rate : FullRate Output Level 0.00dBm Data Rate *
Level O.OO dBm Mem. Reverse Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [IS-95] Link : [Reverse] Chip Rate : [1.228 800Mops] Filter : [SPEC] α : - Traffic, Data Rate : FullRate Output Level 0.00dBm Data Rate * etc.

2004/01/27 18:42:17 S8609A CODE < CCDF (1xEV-DO) >> Method : CCDF Filter : 3MHz * 2621440/ 2621440) Count : C Measure Power [%] Avg : -0.25dBm 43.61% Max : 5.70dB Min : -33.62dB Method ale 10 Scale Probability Mode 10% 2.5dF 1 3.9dB 1% \$ 0.1% Display Data Type Probability 4.6dB 5.1dB 0.1 5.5dB 5.7dB 0.001% 0.0001% # 0.01 Marker : 1.0000% Reference . 3.9dB Meas : Trace 0.001 Save Trace 0.0001 10[dB] -Back Pre Ampl : Off Power Cal : Pwr Mtr Screen 1092CH Level : -6.00dBm Ch 9 Offset Free 00000 0 00dB Correction OFF

• RC 1/2


Discover What's Possible™

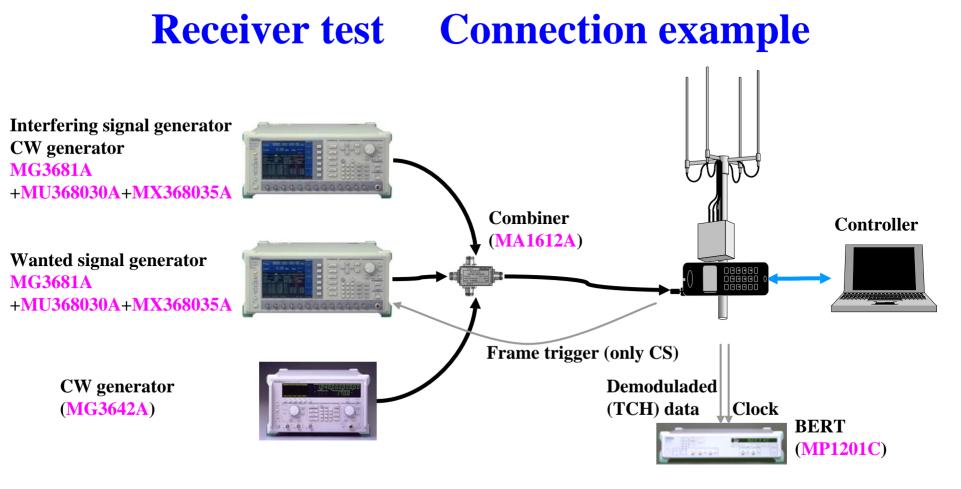
Slide 224 MG3681A-E-I-1

CCDF

CCDF

Ú

PHS RCR STD-28 CS/PS testing


RCR STD-28 V4.0

3.4.3

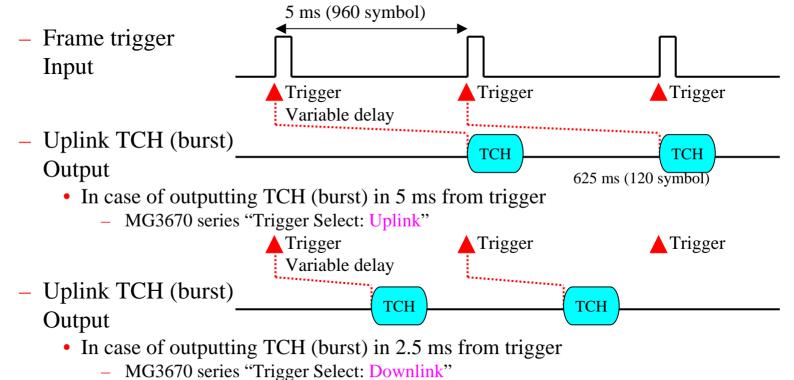
7.2 Receiver Test

0.4.0	1.2						
Requirements	Meas. Methods	Test	Wanted signal generator	Interfering signal generator	CW generator	BERT	Others
3.4.3.2	7.2.1	Sensitivity					
3.4.3.4	7.2.2	Adjacent channel selectivity	M02004A	MG3681A +MU368030A +MX368035A		MP1201C	MA1612A
3.4.3.5	7.2.3	Intermodulation characteristics	MG3681A +MU368030A	MG3681A	MG3642A		3GHz
3.4.3.6	7.2.4	Spurious response	+MX368035A	MG3681A or 3GHz	MG3642A 2.08GHz		
3.4.3.9	7.2.8 7.2.8.3	Receive signal strength indicator accuracy Reception level value is display					
3.4.3.10	7.2.9	Bit error rate floor characteristics				MP1201C	

- Frame trigger
 - Front panel [Trigger] Input
 - 5 ms clock
- Controller
 - Launches TCH in the receivable state by FTM Factory Test Mode control.

Discover What's Possible™

Slide 227


/inritsu

MG3681A-E-I-1

CS receiver Timing sync. Setup example

• Frame trigger delay

» Set the timing to which CS can receive Uplink TCH

/incitcu

CS receiver Timing sync. Setup example

• Setting External Frame trigger

 Captures/ Synchronizes the Trigger of 5 ms clock

• Reference clock:

Apply to cancel the jitter of within $\pm 1/20$ symbol of synchronous errors

- MG3670 series is the jitter within ±1/16 symbol
- » [Ref. Clock] Input applicable case
 - Reference Clock : [Ext(TTL)]
 - 20× 192 kHz (3,840 kHz)
- » [10MHz/13MHz Ref] Input applicable case
 - Reference Clock : [Int]

	PHS
Freq. 1895.150 000 00 MHz	
Level 5.00 dBm Mem. ——	
Baseband : [On] I/Q Mod. : [Int] Pulse Mod. : [Int] System : [PHS] Pattern : [\:UPLINK]	Wave Data Restart
Baseband Setup Trigger Source : [<mark>Frame</mark>] Trigger Delay : [0]/20sps	
♥ 0.0000 sps Reference Clock : [Int]	Wave Data Download
Trigger Pef Clock	170 Input

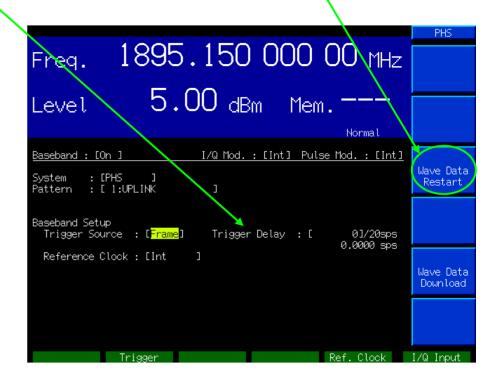
/inritsu

CS receiver

Timing sync. Setup example

• Frame trigger delay

» 0 ~ +16,777,215 /20 symbol 1/20 symbol


resolution

- » Delay from trigger
 - + 2.55 symbol
 - 2.55 ~ 838,863.3 symbol

e.g.

- In case of outputting TCH (burst) in 5 ms from trigger
 - 19,149 /20 symbol
 - Equivalent to MG3670 series
 "Trigger Select: Uplink"
 - 19,171 /20 symbol
 - + 0.614 + 0.5 symbol
- In case of outputting TCH (burst) in 2.5 ms from trigger
 - 9,549 /20 symbol
 - Equivalent to MG3670 series
 "Trigger Select: Downlink"
 - 9,571 /20 symbol
 - + 0.614 + 0.5 symbol

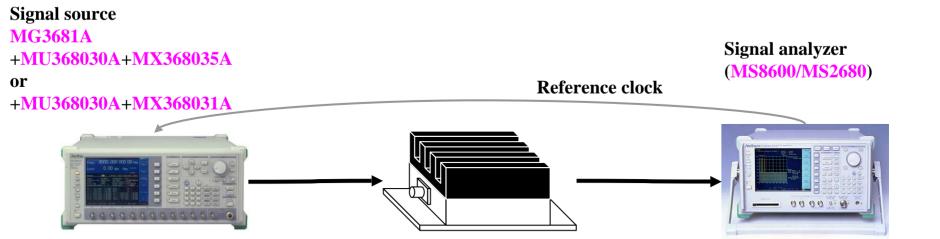
Trigger recapture/ synchronization

/inritsu

Discover What's Possible™

Slide 230 MG3681A-E-I-1

Wanted/Interfering signal generator Setup example


• Wanted signal generator

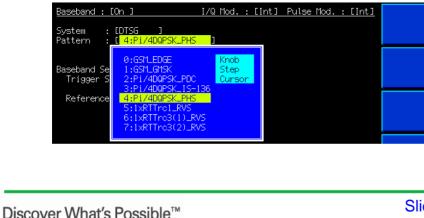
- » CS test
 - Uplink
- » PS test
 - Downlink
- Interfering signal generator – CONPN15

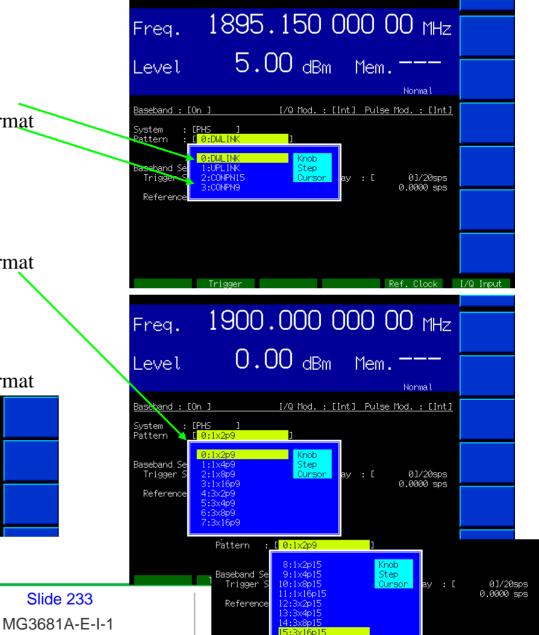
Freq.		150 0	00 (DO MHz	
Level	5.0)O dBm	Mem.	Normal	
Baseband : [C)n]	I/Q Mod. : [Int] Pulse	Mod. : [Int]	
	PHS] 0:DWLINK	<u>ן</u>			
Baseband Se Trigger S	0:DWLINK 1:UPLINK 2:CONPN15 3:CONPN9	Knob Step Cursor ay	· : [0]/20sps 0.0000 sps	
Reference	5.00hrh5			0.0000 393	
	Trigger			Ref. Clock	1/Q Input

RF/IF components test

Connection example

Slide 232 MG3681A-E-I-1


Signal Setup example

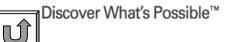

• MX368035A

- » $\pi/4DQPSK$ modulation
 - TCH (burst) format
 - Continuous modulation format
- » 16QAM modulation
- » 8PSK modulation
- » QPSK modulation
- » BPSK modulation
 - Continuous modulation format

• MX368031A

- » $\pi/4$ DQPSK modulation
 - Continuous modulation format

Contrast of typical ACLR

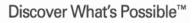

• Burst (TCH) format

- » 600 kHz: +0.5 ~ +1 dB
- » 900 kHz: +1 ~ +2 dB

Continuous modulation format

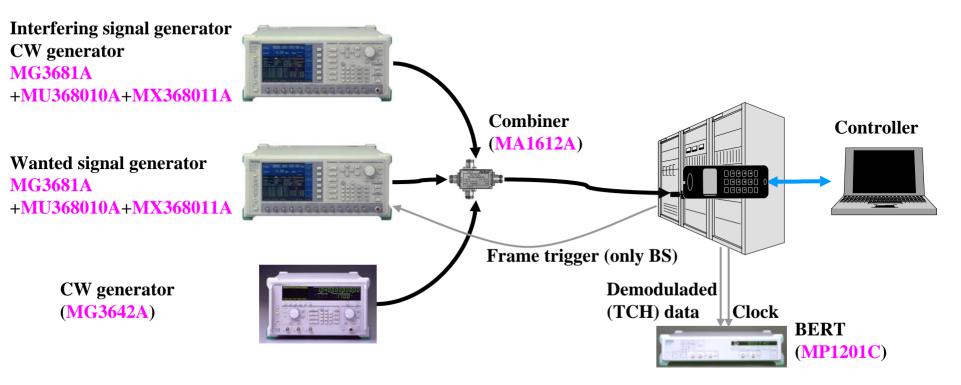
8609A 2003 Adjacent Cha	nnel Powert	π/4UUPSKJ>>			Method
		Ste	orage : Normal		
			thod : Spectr	um(Separate)	Spectru
		A STATISTICS			(A11)
					0
					Spectru (Separat
					,
and the state of the black of the second state of the state	وحاطة فرجيس لاعط فأطعا رزر أسادين		and a finishing of the second	الترجيب ومرابلات	
		o OkHz Data Po	and the second		High Spe
	Span : 20	UKRZ DALA FU	11115 : 001		
Tx Power :	4.49 dBm				
Leakage Power	Lower	Upper	Channel BW :	192.0kHz	
600 kHz :	-73.87 dB	-73.73 dB	Spectrum Anal	yzer	
900 kHz :	-75.98 dB	-75.65 dB	Ref : 0.	00dBm	
			ATT : 10dF RBW : 1kHz		
			VBW : 3kHz		
			SWT : 2.5s DET : Posit	x 5 ive Peak	
			DEI : FOSIC	IVE FEAK	
			Pre Ampl		returi
)h : Teg : 1900 0			00dBm Power Ĉa	1 : Pwr Mtr	1
Freq : 1900.0	00000MHz 0	ffset : 0.0		1 : Pwr Mtr	1
Freq : 1900.0	000000MHz 0	ffset : 0.0 52:03	00dBm Power Ĉa	1 : Pwr Mtr	TE LULT 1 Heasure Hethod
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sta	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sto Me	00dBm Power Ĉa 00dB Correcti orage : Normal	l : Pwr Mtr on : Off	1 Heasure
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sto Me	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure Hethod
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sta	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure Hethod Spectru
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sto Me	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure Method Spectru (All)
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sto Me	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure Hethod Spectry (All)
Freg : 1900.0 58609A 2003	000000MHz 0	ffset : 0.0 52:03 π/4DQPSK)>> Sto Me	00dBm Power Ĉa 00dB Correcti orage : Normal	1 : Pwr Mtr on : Off	1 Heasure Method Spectru (All)
Freq : 1900.0 (8609A 2003 (Adjacent Cha	000000MHz 0 1/05/27 11:1 nnel Power(:	ffset : 0.1 52:03 ¤/4D0PSK>>> Stu Mer	00dBm Power Ča 00dB Correcti orage : Normal thod : Spectr	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All) Spectry (Separat
Freq : 1900.0 58609A 2003 (Adjacent Cha	000001112 0 1/05/27 11: nnel Power(:	ffset : 0.1 52:03 x/4D0PSK>>> Stu Mer	00dBm Power Ča 00dB Correcti orage : Norma thod : Spectr	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All)
Freq : 1900.0 (8609A 2003 (Adjacent Cha	0000001112 0 1/05/27 11:1 nnel Power(:	ffset : 0.1 52:03 ¤/4D0PSK>>> Stu Mer	00dBm Power Ča 00dB Correcti orage : Norma thod : Spectr	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All) Spectry (Separat
Freq : 1900.0 (8609A 2003 (Adjacent Cha	000001112 0 1/05/27 11: nnel Power(:	ffset : 0.1 52:03 x/4D0PSK>>> Stu Mer	00dBm Power Ca 00dB Correcti thod : Spectr	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All) Spectry (Separat
Freq : 1900.0 58609A 2003 Adjacent Cha	0000001112 0 1/05/27 11: nnel Power(: Span : 200 4.54 dBm	ffset : 0.1 52:03 x/4DQPSK>>> St Mer Mer Mer Mer Marken Mer Mer Marken Mer Mer Mer Mer Mer Mer Mer Mer Mer Mer	00dBm Power Ča 00dB Correcti orage : Norma thod : Spectr	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All) Spectry (Separat
Freq : 1900.0 1900.0 (8609A 2003) 2003 (Adjacent Cha 2003 (Adjacent Cha) 2003	0000001112 0 1/05/27 11: nnel Power(: Span : 200 4.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00dBm Power Ca 00dB Correct thod : Spectr 00dB Spectr 00dB Spectr 00dB Correct 00dB	1 : Pwr Mtr on : Off um(Separate) (Main(Network)) 192.0kHz yzer	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 (8609A 2003) (Adjacent Cha (1996) (19	000000MHz 0 1/05/27 11: nnnel Power(: Span : 20 4.54 dBm	ffset : 0.1 52:03 x/4DQPSK>>> St Me: Me: Me: Me: Me: Me: Me: Me: Me: Me:	00dBm Power Ca 00dB Correct thod : Spectr 	1 : Pwr Mtr on : Off um(Separate) (distant of the separate) (distant o	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 (adjacent Cha (adjacent Cha)) (adjacent Cha (adjacent Cha (adjacent Cha)) (adjacent Cha (adjacent Cha)) (adjacent Cha) (adjacent Cha) (ad	0000001112 0 1/05/27 11: nnnel Power(: 9 9 9 9 9 9 9 9 9 9 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00dBm Power Ca 00dB Correcti 00dB Correcti 00d : Spectr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 : Pwr Mtr on : Off um(Separate) () () () () () () () () () () () () ()	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 (adjacent Cha (adjacent Cha)) (adjacent Cha (adjacent Cha (adjacent Cha)) (adjacent Cha (adjacent Cha)) (adjacent Cha) (adjacent Cha) (ad	0000001112 0 1/05/27 11: nnnel Power(: 9 9 9 9 9 9 9 9 9 9 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OOdBa Power Ca OOdB Correct thod : Spectr ints : 501 Channel BW : Spectrum Anal Ref : 0. ATT : 104 RBW : 1kHz	1 : Pwr Mtr on : Off un(Separate) (Mohastronauta) (Mohastronauta) 192.0kHz yzer OodBm	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 Se609A 2003 Adjacent Cha magnitude the second se	0000001112 0 1/05/27 11: nnnel Power(: 9 9 9 9 9 9 9 9 9 9 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00dBm Power Ca 00dB Correct orage : Normal thod : Spectr 	1 : Pwr Mtr on : Off um(Separate)	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 Se609A 2003 Adjacent Cha magnitude the second se	0000001112 0 1/05/27 11: nnnel Power(: 9 9 9 9 9 9 9 9 9 9 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00dBm Power Ca 00dB Correct orage : Normal thod : Spectr 	1 : Pwr Mtr on : Off um(Separate) (Multiple Management) (Multiple	1 Heasure Hethod Spectry (All) Spectry (Separa
Freq : 1900.0 Se609A 2003 Adjacent Cha magnitude the second se	0000001112 0 1/05/27 11: nnnel Power(: 9 9 9 9 9 9 9 9 9 9 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm 2 1.54 dBm	ffset : 0.1 52:03 #/4DQPSK>>> Stu Me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00dBm Power Ca 00dB Correct orage : Normal thod : Spectr 	1 : Pwr Mtr on : Off um(Separate) (Multiple Manager 192.0kHz yzer 00dBm ix 5 ive Peak	1 Heasure Hethod Spectry (All) Spectry (Separa

/inritsu


Slide 234 MG3681A-E-I-1

PDC RCR STD-27 BS/MS testing

RCR STD-27K


6.2 Receiver Test

0.7.0	0.2				-		
Reauirements	Meas Methods	Test	Wanted signal generator	Interfeing signal generator	CW generator	BERT	Others
3.4.3.2	6.2.1	Sensitivity					
3.4.3.4	6.2.2	Adjacent channel selectivity		MG3681A +MU368010A +MX368011A			
3.4.3.5	6.2.3	Intermodulation characteristics		MG3681A	MG3642A	MP1201C	MA1612A
3.4.3.6	6.2.4	Spurious response	+MU368010A	MG3681A or 3GHz	MG3642A 2.08GHz		3GHz
3.4.3.8	6.2.6	Interference level (CIR)	— +MX368011A	MG3681A +MU368010A +MX368011A			
3.4.3.10	6.2.8	Reception level detection					
3.4.3.11	6.2.9	Network quality detection accuracy				MP1201C	

Receiver test Connection example

- Frame trigger
 - Front panel [Burst Trig] Input
 - 20 ms clock (Full rate), 40 ms clock (Half rate)
- Controller
 - Launches TCH in the receivable state by FTM Factory Test Mode control.

Slide 236 MG3681A-E-I-1

/inritsu

BS receiver Timing sync. Setup example

• Setting External Frame trigger

» Captures/ Synchronizes the Trigger of 20 ms clock (Full rate)/ 40 ms clock (Half rate)

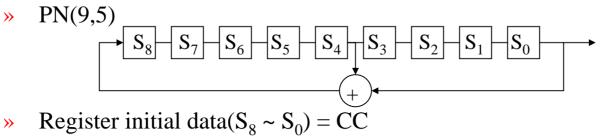
• [10MHz/13MHz Ref] Input:

Apply to cancel the jitter of within $\pm 1/16$ symbol of synchronous errors

MG3670 series is the jitter within ±1/16 symbol

Freq.	800.000 000 00 MHz	Digital Moc
Level	5.00 dBm Mem. ——— Normal	- Pattern Edit
<u>Baseband</u> System Modulation	: [On] I/Q Mod.: [Int] Pulse Mod.: [Int] : [PDC] : π/4 DQPSK Bit Rate : [42.0kbps]	
Filter <u>Slot Rate</u> Burst Pattern	: [RNYQ] a=[0.50] Phase Encode : [Normal [']] <u>: [Fullrate]</u> : [On] : [<u>UP_</u> TCH]]	
`Trigger	: [Ext] Slot Ø Slot I Slot 2	
	UP TCH	
Data	Symbol Clock Burst Gate Burst Trig Data Clock	I/Q Input

/incitcu



Slide 237 MG3681A-E-I-1

Scramble pattern sync.

Setup example

• Scramble pattern

	:00.000 0 5.00 _{dBm}	000 00 MHz Mem	PatternEdit Pattern Save/Delete	Freq. Level	800.000 5.00 dBm	n Mem) MHz 	PatternEdit Pattern Save/Delete Pattern List
System : PDC	Pattern : UP TCH	Normat		System : PDC	Pattern : DN TCH		rinat	LISU
Slot Ø	Slot 1	Slot 2		DOWN 1		Slot 2 DOWN TCH	_	
A [[<mark>Slot 0</mark>] : [UP TCH]		Δ				Δ		
R P TCH 4 2 112 Scramble Scramble Code	SW CC SF SACC 20 8 1 15 : EOn I(TCH,SF,SACCH) : E000JH	<u>112</u> 6 R:0н P:2н		R P 4 2 Scramble Scramble		Р: 2н		
TCH SW CC SACCH	: [PN9] : [785В4]н : [00]н : [0000]н	SF : Он G : Он	→ Return	TCH SW CC SACCH	: [PN9] : [87А4В]н : [00]н : [000000]н	SF : Он		, Return
Data Symbol C	Clock Burst Gate Burs	st Trig 🛛 Data Clock	I/Q Input	Data Sym	bol Clock Burst Gate E	Burst Trig 🛛 Data	Clock	I/Q Input


Discover What's Possible™

Slide 238 MG3681A-E-I-1

Wanted/Interfering signal generator Setup example

- Wanted signal generator
 - » BS test
 - UP TCH
 - » MS test
 - DN TCH ALL

• Interfering signal generator

Slide 239 MG3681A-E-I-1

			Digital Mod			
eq.	800.000	000 00 M				Digital Mod
vel	5.00 dBi	m Mem.——-	Freq.	800.000.000	D OO MHz	
		Normal	Level	5.00 dBm M	em. ———	, Pattern
oand em	: [<mark>PDC</mark>]	[Int] Pulse Mod.: [In			Normal	Edit
lation er <u>Rate</u>		Rate : [42.0kbps] se Encode : [Normal]	<u>System</u> Modulation	: [On] I/Q Mod.: [Int] F : [PDC] : π/4 DQPSK Bit Rate	: [42.0kbps]	
ern ger	: LUP TCH] : [UP TCH] : [Ext]		Filter <u>Slot Rate</u> Burst	: [RNYQ] α=[0.50] Phase Encode : [Halfrate] : [On]		
	Slot Ø Slot 1	Slot 2	Pattern Trigger	: CUP TCH] : CExt]		
			Slot Ø	Slot 1 Slot 2 Slot 3 Slot 4	Slot 5	
∆ Data	Symbol Clock Burst Gate	∆ Burst Trig Data Clock			——(
			∆ Data Sy	mbol Clock Burst Gate Burst Tr	∆ ig Data Clock	I/Q Input
	~~~~~~~	~~~~~	Digital Mod			
ea.	800.000	000 00 m				Digital Mod
eq. vel				800.000.000		Digital Mod
eq. vel	800.000 5.00 dBi	m Mem.——-	Freq.	800.000 000	D OO MHz	Digital Mod
	5.00 dB1		Freq.	800.000 000		Digital Mod Pattern Edit
vel oand em lation er	5.00 dBr : [0n ] [/0] Mod.: : [POC] : #/4 D0P5K Bit : [R/WQ] #=[0.50] Phas	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps]	.Freq. Level	800.000 000 5.00 dBm Mi	DOOMHZ em Normal	, Pattern →
vel oand em lation er <u>Rate</u>	5.00 dBr : [0n ] [/0 Mod.: : [70] : x/4 D0PSK Bit : [RHM0] a=[0.50] Phas : [Fullrate] : [0n ]	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps]	Freq. Level	800.000 000 5.00 dBm M : [0n ] 1/9 Mod.: [Int] f : [70] : */4 D0P5K Bit Rate	DOOMHZ em Normal Pulse Mod.: [Int] : [42.0kbps]	, Pattern →
vel oand em lation er	5.00 dBr : [0h ] 1/9 Mod.: : [POC] : #/4 D0PSK Bit : [RNM0] @=[0.50] Phas : [Fullrate]	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps]	.Freq. Level	800.000 000 5.00 dBm M : Con J 1/0 Mod.: [Int] f	DOOMHZ em Normal Pulse Mod.: [Int] : [42.0kbps]	, Pattern →
vel oand am lation er Rate t ern ger	5.00 dBi : [0h ] [/0 Mod.: : [F0C] : #/4 D0PSK Bit : [RWM0] = [0.50] Phas : [Fullrate] : [0h ] : [0h TCH ALL]	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps]	Ereq.	800.000 000 5.00 dBm M : [0n ] 1/9 Mod.; [Int] f : r/4 00PSK Bit Rate : [RNYQ] a=[0.50] Phase Encode : [Halfrate] : [0n ]	DOOMHZ em Normal Pulse Mod.: [Int] : [42.0kbps]	, Pattern →
vel oand em lation er Rate t ern ger	5.00 dBr : [0n ] [/0 Mod.: : [ ^{FOC]} : #/4 D0PSK Bit : [RMY00] ==[0.50] Phas : [Fullrate] : [On ] : [ON TCH ALL] : [Int]	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps] se Encode : [Normal ]	Evel Baseband System Modulation Filter Slot Rate Burst Pattern Trigger	800.000 000 5.00 dBm Ma : [0n ] [/@ Mod.: [Int] ] : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : [Halfrate] : [On ] : [On ] : [On ] : [On ] : [On ]	DOOMHZ em Pulse Mod.: [Int] : [42.0kbps] : [Normal]	, Pattern →
vel oand em lation er Rate t ern ger	5.00 dBr : [0h ] [/0 Mod.: : #/4 D0PSK Bit : [RMY0] @=[0.50] Phas : [Chulrate] : [0h ] : [0h TCH ALL] : [1ht] Slot 0 Slot 1	M Mem. Normal [Int] Pulse Mod.: [In Rate : [42.0kbps] se Encode : [Normal ]	Freq. Level Baseband System Modulation Filter Slot Rate Burst Pattern Trigger	800.000 000 5.00 dBm Ma : [0n ] [/@ Mod.; [Int] f : [700] : #/4 00PSK Bit Rate : [RHNY0] a=[0.50] Phase Encode : [Halfrate] : [On ] : [On ]	DOO MHZ em Pulse Mod.: [Int] : [42.0kbps] : [Normal ]	, Pattern →
vel oand lation er Rate t ern ger	5.00 dBr : [0n ] 1/0 Mod.: : [POC] : #/4 D0PSK Bit : [RNY0] @=[0.50] Phas : [Cn ] : [On ] : [On ] : [On ] : [Int] Slot 0 Slot 1 DOWN TCH DOWN TCH	M Mem. Normal Lint] Pulse Mod.: [] Rate : [42.0kbps] se Encode : [Normal ] Slot 2 DOWN TCH	Ereq. Freq. Level Baseband System Modulation Filter Slot Rate Burst Pattern Trigger Slot 0 DOWN TCH	800.000 000 5.00 dBm Ma : [0n ] [/@ Mod.: [Int] ] : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : #/4 00PSK Bit Rate : [Halfrate] : [On ] : [On ] : [On ] : [On ] : [On ]	DOO MHZ em Pulse Mod.: [Int] : [42.0kbps] : [Normal ]	, Pattern →



### **Packet communication Receiver test Setup example**

Slide 240

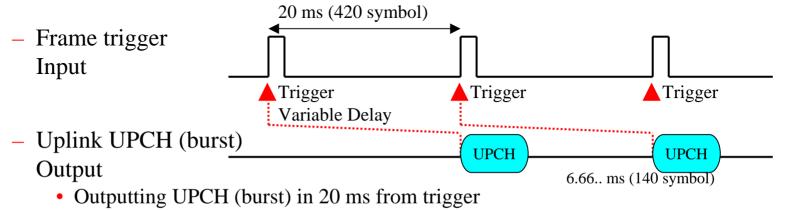
MG3681A-E-I-1

#### • Wanted signal generator

MG3681A

- + MU368030A + MX368034A
- » BS test Uplink UPCH
  - UP1
- » MS test

Downlink UPCH


- DN1
- DN2
- DN3

	PDC-P
Freq. 800.000 000 00 MHz	
Level 5.00 dBm Mem	
Normal	
	ve Data
Pattern : [0:DNLINK3 ]	estart
Baseband Setup Trigger Source : [Int ] Trigger Delay : [ 0]/16sps	
Reference Clock : [Int ]	
	ve Data ownload
TriggerKef. Clock I/Q	Input
Freq. 800.000 000 00 MHz	
Level 5.00 dBm Mem 🗖	
Normal	
Baseband : [On ] I/Q Mod. : [Int] Pulse Mod. : [Int]	
System : [PDC-P]] UMU34DN1.DL1 Knob Pattern : [0:DNLINK3] UMU34DN2.DLI Step UMU34DN3.DLI Cursor	
Baseband Setup	
Trigger Source : [Int ] Trigger Delay : [ 0]/16sps 0.0000 sps Reference Clock : [Int ]	
Trigger Ref. Clock I/Q	Input

### **BS receiver Timing sync. Setup example**

### • Frame trigger delay

» Set the timing to which BS can receive Uplink UPCH





### **BS receiver**

## Timing sync. Setup example

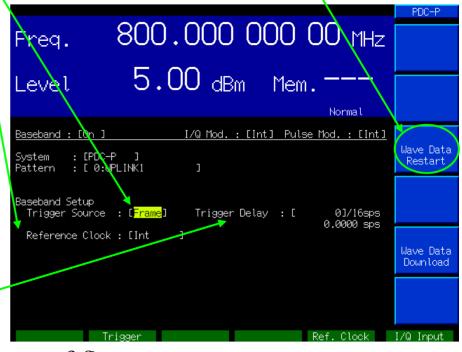
#### • Setting External Frame trigger

 Captures/ Synchronizes the Trigger of 20 ms clock

### • Reference clock:

Apply to cancel the jitter of within  $\pm 1/16$  symbol of synchronous errors

- » [Ref. Clock] Input applicable case
  - Reference Clock : [Ext(TTL)]
    - 16× 21 kHz (336 kHz)
- » [10MHz/13MHz Ref] Input applicable case
  - Reference Clock : [Int]
- Frame trigger delay
  - » 0 ~ +16,777,215 /16 symbol 1/16 symbol


resolution

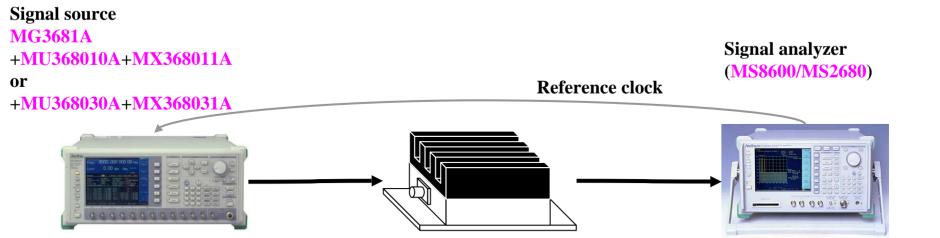
» Delay from trigger + 3.7 symbol

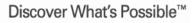
— 3.7 ~ 1,048,579.6 symbol Discover What's Possible™

Slide 242 MG3681A-E-I-1

 Trigger recapture/ synchronization




#### e.g.


 In case of outputting UPCH (burst) in 20 ms from trigger
 6,661 /16 symbol

### /inritsu

### **RF/IF components test**

### **Connection example**

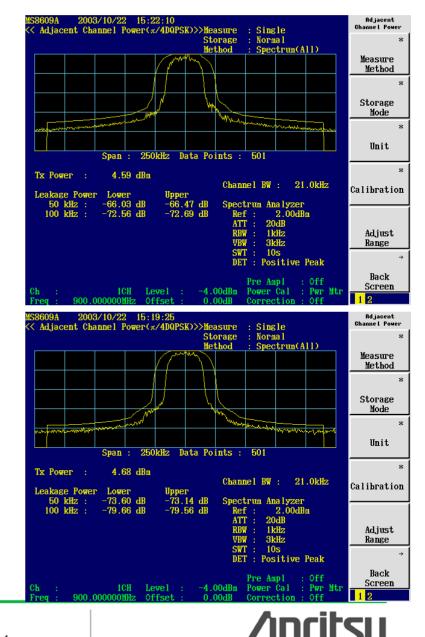




Slide 243 MG3681A-E-I-1



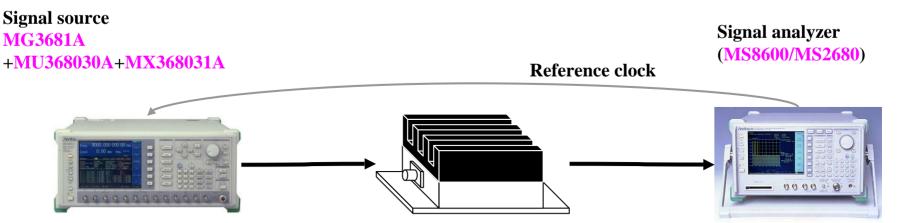
### Signal Setup example


#### 800.000 000 00 MHz Erea. **MX368011**A 5.00 dBm Mem. Burst format Level >> Normal Continuous modulation format >> I/Q Mod.: [Int] Pulse Mod.: [Int] : [On ] Baseband FPDC1 Sustem Modulation π/4 DQPSK Bit Rate : [42.0kbps] [RNY0] ~=[0.50] Filter Phase Encode : [Normal ] Slot Rate [Halfrate] Burst : [On ] Pattern N TCH ALL Trigger Knob Step Cursor TCH ALL **MX368031A** Slot 4 Slot 5 Slot Ø OWN TCH DOWN TCH DOWN TCHIDO DN TCH ALL Continuous modulation format >> Δ 170 Input Symbol Clock Burst Gate Burst Trig Data Clock Baseband : [On ] I/Q Mod. : [Int] Pulse Mod. : [Int] Data : [DTSG ] : [<mark>2:Pi/4DQPSK_PDC </mark>] System 800.000 000 00 MHz Pattern Freq. 0:GSM_EDGE 1:GSM_GMSK Knob Baseband Se Step Trigger S Cursor ay :[ 0]/16sps 5.00 dBm Mem. 3:Pi/4DQPSK_IS-136 4:Pi/4DQPSK_PHS 0.0000 sps Level Reference 5:1xRTTrc1_RVS Normal 6:1xRTTrc3(1)_RVS 7:1xRTTrc3(2)_RVS Baseband : [On ] I/Q Mod.: [Int] Pulse Mod.: [Int] System : [PDC] 0001 Knob : π/4 DQPSK : [RNYQ] α=[0.50] Modulation Step .0kbps] Filter Cursor rmal 1 Slot Rate : [Fullrate] 0100 Burst : [Off] 0110 0111 Pattern 1000 PN15 1001 1111 1100 0101 1010 Others IZO Inpu Data Burst Gate Burst Data Clock Slide 244 Anritsu Discover What's Possible™ MG3681A-E-I-1

### **Contrast of typical ACLR**

#### • Burst (TCH) format

- » 50 kHz: +7 dB
- » 100 kHz: +7 dB


#### Continuous modulation format



Ú

Slide 245 MG3681A-E-I-1

### NADC ^{IS-136} RF/IF components test Connection example



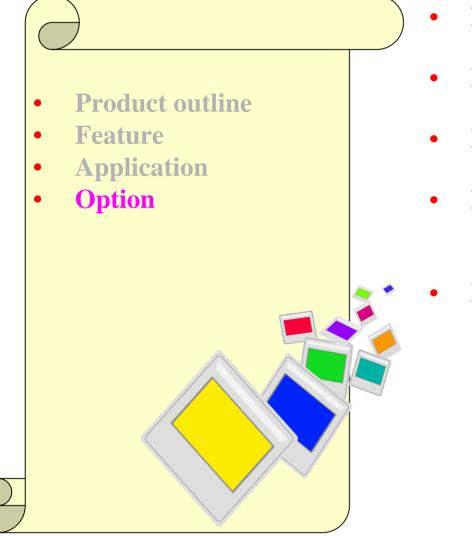


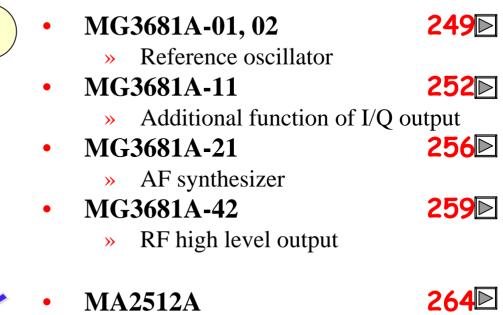
Slide 246 MG3681A-E-I-1



### Signal Setup example

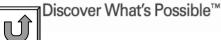
Continuous modulation format


					DTSG
Freq.	900.	000	000	00 MHz	
Level	5.0	0 dBm	Mem		
				Normal	
Baseband : [On ]		I/Q Mod. :	[Int] Puls	e Mod. : [Int]	
System : [DTS( Pattern : [ <mark>3:</mark>		<mark>136</mark> ]			
Baseband Setup Trigger Source	: [Int ]	Trigger D	Delay :[	0]/16sps 0.0000 sps	
Reference Clock	k : [Int ]	]		0.0000 SPS	Wave Data Update
	rigger			Ref. Clock	1/0 Input




Slide 247 MG3681A-E-I-1




### **Option**





**Band Pass Filter »** 





Slide 248 MG3681A-E-I-1



### MG3681A-01, 02 Reference oscillator

• Exchangeable to long-term stable internal reference oscillator

	Standard	MG3681A-01	MG3681A-02
Aging rate	$\pm$ 1 × 10 ⁻⁶ /year	$\pm$ 5 $ imes$ 10 ⁻⁹ /day	$\pm 5 \times 10^{-10}$ /day
		$(\pm 5 \times 10^{-8} / year)$	$(\pm 2 \times 10^{-8} / year)$
Warm-up stability		$\pm 1 \times 10^{-7}$	$\pm 1 \times 10^{-7}$
Temperature stability (0 ~ 50 °C)	$\pm 1 \times 10^{-6}$	$\pm 3 \times 10^{-8}$	$\pm 5 \times 10^{-9}$

* Warm-up stability: After 10 minute (compared to frequency after 24 hours)

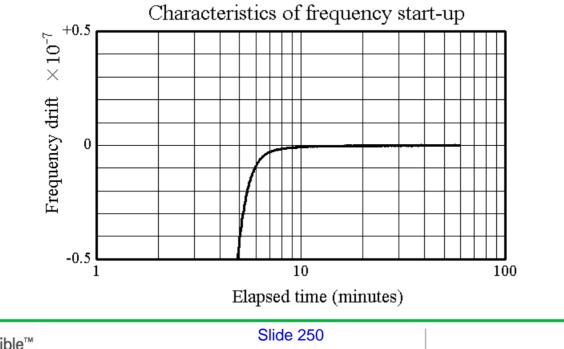
• Frequency accuracy is specified by the aging rate of reference oscillator.

- » Frequency accuracy
  - =  $\pm$  Output frequency  $\times$  Aging rate  $\times$  Time since last calibrated

e.g. 2 GHz

1 year

- $= \pm 2 \text{ kHz}$  * Standard
- $= \pm 40 \text{ Hz}$  * MG3681A-02

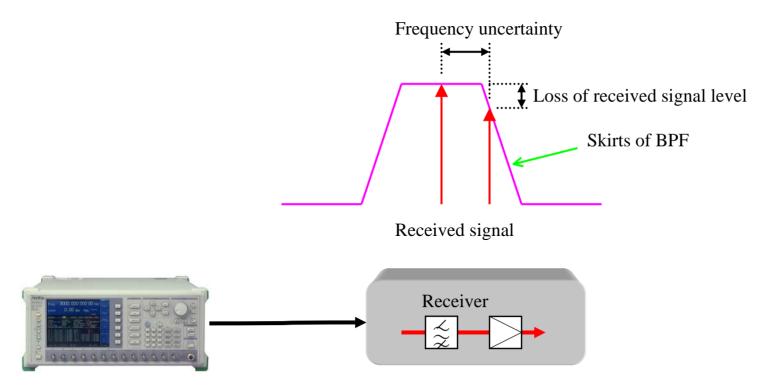

Slide 249

MG3681A-E-I-1



### Warm-up stability

- The long-term stable internal reference oscillator of MG3681A-01 and 02 uses OCXO of the oven system which stabilizes frequency only 10 minutes after the main power ON.
  - Since oven is preheated in power standby state, frequency is stabilized >> immediately after power ON from only 10 minutes standby state.
- Standard internal reference oscillator uses TCXO with unnecessary preheating.






MG3681A-E-I-1

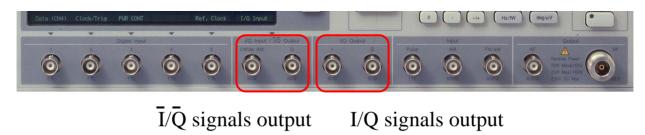
# Effect of frequency accuracy on receiver sensitivity test

- In case of more frequency uncertainty (poor frequency accuracy), receiver is tested as deteriorated sensitivity than true value.
  - The level of the signal is lost when the received signal is located in the skirt of BPF in a receiver by frequency uncertainty.





Slide 251 MG3681A-E-I-1



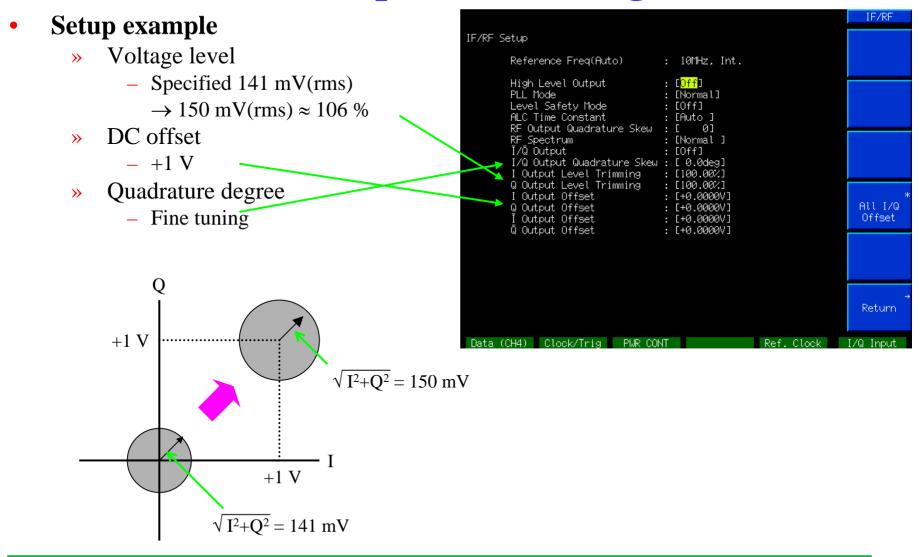

# MG3681A-11 Additional function of I/Q output

- Variable of voltage level of I/Q signals output, DC offset and quadrature degree
  - > Voltage level: 80 ~ 120 % resolution 0.1 %
    − RMS level ( $\sqrt{I^2+Q^2}$ ) is specified in each system software.
  - » DC offset:  $-0.5 \sim +1.5 \text{ V}$  resolution 0.5 mV
  - > Quadrature degree:  $-5 \sim +5^{\circ}$
- resolution 0.5  $^{\circ}$

### • Differential I/Q signals can be outputted.

»  $\overline{I}/\overline{Q}$  signals which are reversal signals (amplitude is equal and polarity is reverse) of I/Q signals are outputted.




Slide 252 MG3681A-E-I-1



# Variable application of voltage level of I/Q signals output, DC offset and quadrature degree

- In order to test the vector modulator, the setup of vector magnitude, drive DC voltage and I/Q quadrature degree is required for the signal source.
  - » Vector Magnitude
    - Voltage level is set as RMS level of the vector modulator.
  - » Drive DC voltage
    - In order to drive the vector modulator of the single power supply system, DC offset is set as drive voltage.
  - » Quadrature degree
    - In order to cancel the error of I/Q quadrature degree (90°) of the vector modulator, quadrature degree is set.

# Variable of voltage level of I/Q signals output, DC offset and quadrature degree



Slide 254 MG3681A-E-I-1

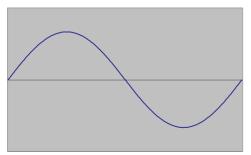
**Annitsu** 

# **Application of differential I/Q signals**

- In order to test the vector modulator and baseband LSI for balanced device, the output of I, I, Q and Q balance is required for the signal source.
- In I/Q input device, the balanced input has the advantage which can reduce the amplitude error and the noise compared with I and Q unbalanced input (single end).
  - » Reduction of the amplitude error by the grand loop
    - The cause is that the ground of the signal source and the ground of the input device are not equivalent potential.
  - » Reduction of a signal line noise
    - The cause is that the environmental noise is picked up on the signal line.

### • For outputting differential I/Q signals

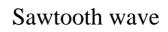
» I/Q Output: [On]

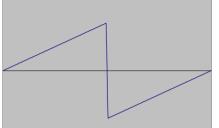



### MG3681A-21 AF synthesizer


• AF can be outputted.




» 0.01 Hz ~ 400 kHz Sine wave



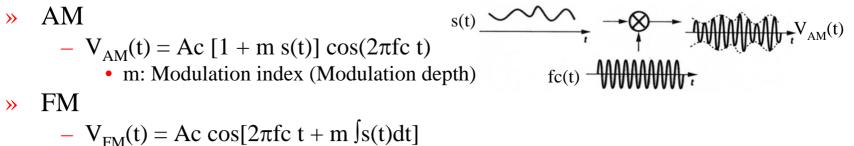

resolution 0.01 Hz Triangle wave



Square wave



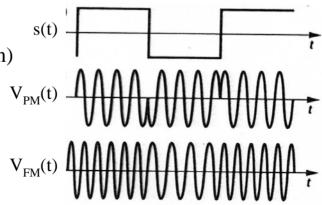





Discover What's Possible™

Slide 256 MG3681A-E-I-1

### MG3681A-21 AF synthesizer


### Internal analog modulation signal can be outputted.



- m: Frequency modulation index (Frequency deviation)
- »  $\phi M (PM)$

$$- V_{PM}(t) = Ac \cos[2\pi fc t + m s(t)]$$

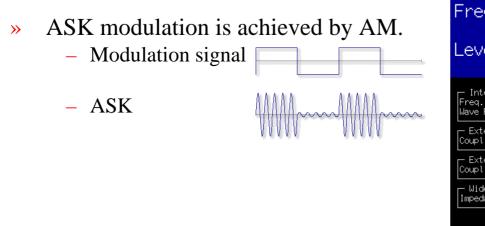
- m: Phase modulation index (Phase deviation)
- Ac: Carrier amplitude
- s(t): Modulation signal (AF)
- fc: Carrier frequency (RF)





# **External analog modulation**

• Input Modulation signal (AF).

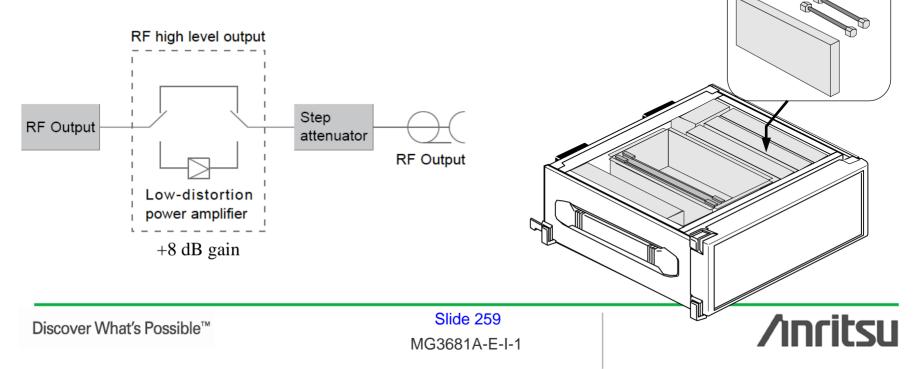



Slide 258

MG3681A-E-I-1

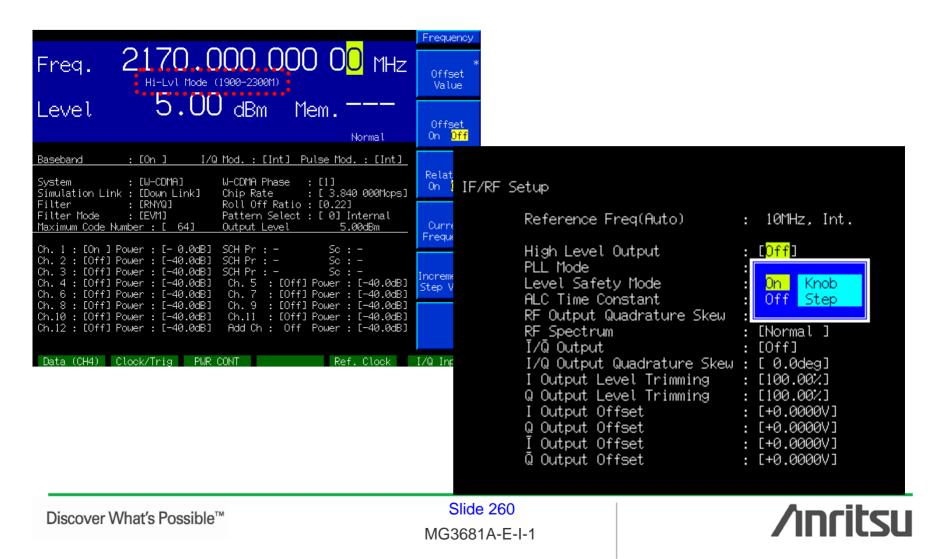
### • Wideband AM

» Applicable to wideband (high-speed) video modulation




Freq.	467.000 000 00 m	Analog Mod AF Output On Off
Level	0.00 dBm Mem.——· Normal	AM I On <mark>Off</mark>
– Internal AF Freq. : [ <mark>1.</mark> Wave Form : [S	000 03kHz] Sine ]Offset : [ 0.000V(p-p) Offset : [ 0.000V]	)] FM / φM <mark>FM</mark> φM
- External AM Coupling : [AC - External FM/ Coupling : [AC	2] [Ext ]→Depth : [ 0.0%] (eff Input Ffi On	FM / φM <mark>On</mark> Off
- Wide AM Inpu Impedance :	nt r Wide AM Off	) Wide AM On <mark>Off</mark>
Data (CH4) (	Clock/Trig PWR CONT Ref. Cloc	ck I/Q Input

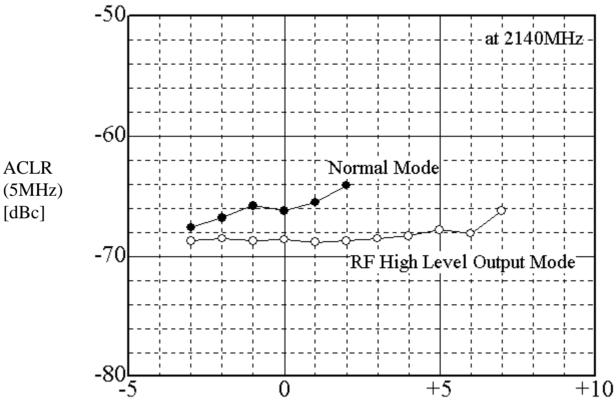



## MG3681A-42 RF high level output

- **RF** output level range in CDMA modulation signals can be gained 8 dB without degrading the adjacent channel leakage power ratio.
  - » at outputting 1.9 to 2.3 GHz used as the frequency band for IMT-2000 systems
  - » ACLR does not degrade up to +5 dBm in W-CDMA/CDMA2000 modulation.



# Application


• Useful for signal source of power amplifier requiring a high input level

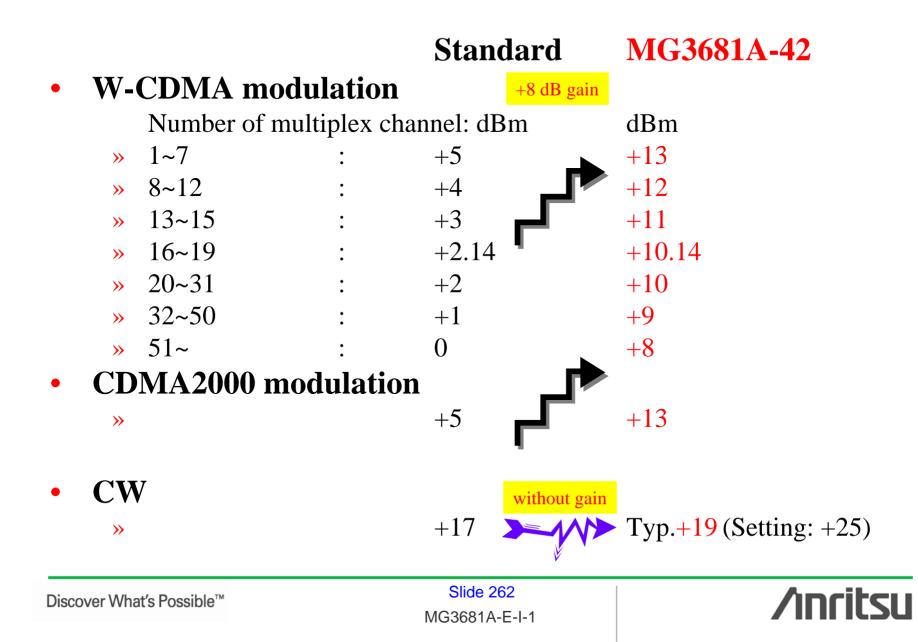


# Typ. ACLR

### • W-CDMA

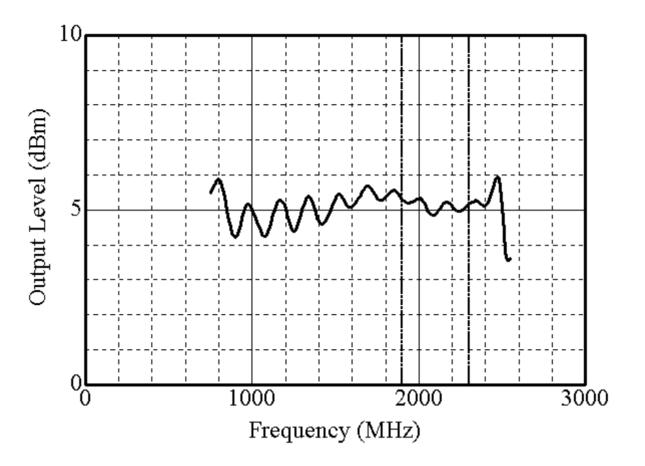
» Test Model 1: 16 DPCH




Output level [dBm]



Slide 261 MG3681A-E-I-1


### Maximum output level

(1.9~2.3 GHz)



### Typ. output level frequency response

• Level +5 dBm setting (CW)



Slide 263 MG3681A-E-I-1

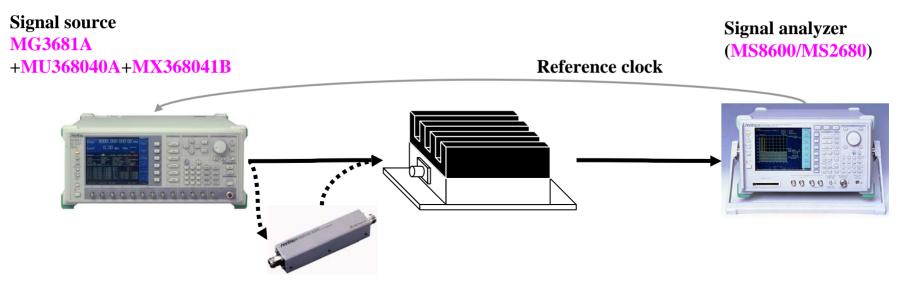


### **MA2512A Band Pass Filter**

- The unnecessary spurious signal of a signal generator can be attenuated.
  - » at outputting 1.92 to 2.17 GHz used as the frequency band for IMT-2000 systems
  - » Excellent amplitude ripple and group delay characteristics don't degrade modulation accuracy of the signal.



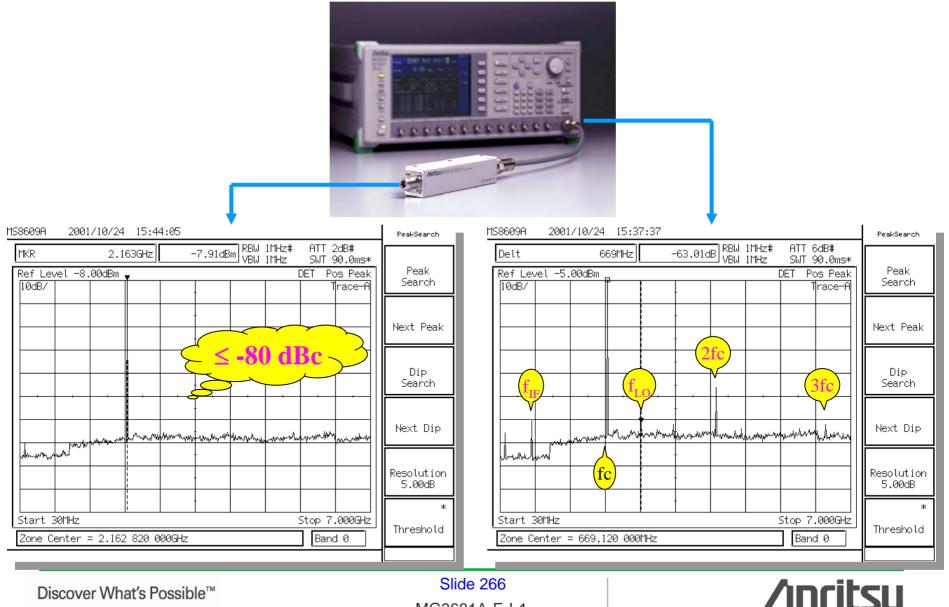





Slide 264 MG3681A-E-I-1

# Application

### • When spurious signals hinder components evaluation


- » Spurious signals of MG3681A
  - 660 MHz (IF leakage)
  - +660 MHz offset (Local leakage)
  - 2×frequency/3×frequency (2nd/3rd harmonics)



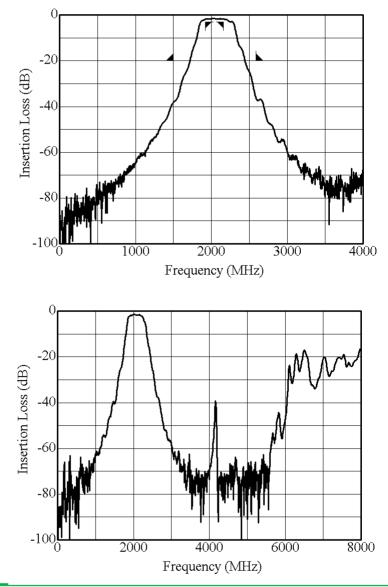


Slide 265 MG3681A-E-I-1

### **Improvement of spurious**



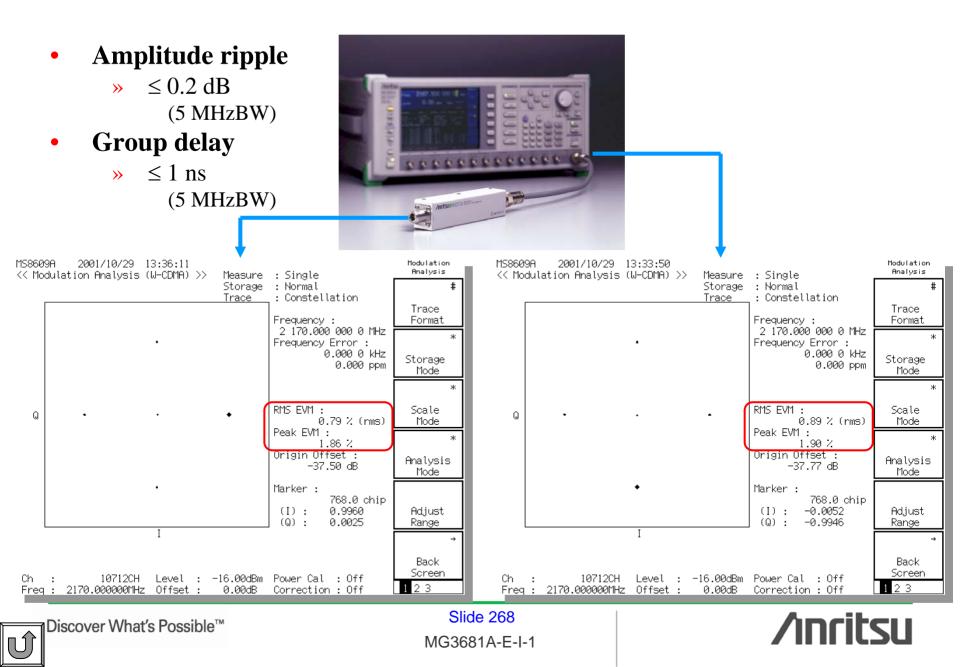
MG3681A-E-I-1


## Loss frequency response

**Pass band** 

- 1.92~2.17 GHz (IMT-2000 system band)
- Insertion loss  $\leq 3.5 \text{ dB}$
- Return loss  $\geq 15 \text{ dB}$

**Filter band** 


- DC ~ 1.5 G, 2.58 ~ 7 GHz
- Attenuation ≥ 20 dB (< 5 GHz) ≥ 10 dB (≥ 5 GHz)



### /inritsu

Slide 267 MG3681A-E-I-1

### **Modulation accuracy not degrading**



# /incitsu

#### Anritsu Corporation

5-1-1 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1238

#### • U.S.A. Anritsu Company

1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

 Canada Anritsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

#### Brazil

Anritsu Eletrônica Ltda. Praca Amadeu Amaral, 27 - 1 Andar 01327-010-Paraiso-São Paulo-Brazil Phone: +55-11-3283-2511 Fax: +55-11-3288-6940

#### Mexico

Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

### • U.K.

Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

#### • France

Anritsu S.A. 16/18 avenue du Québec-SILIC 720 91961 COURTABOEUF CEDEX, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

#### Germany

Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

### Italy

Anritsu S.p.A. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

#### Sweden Anritsu AB

Borgafjordsgatan 13, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

#### • Finland Anritsu AB

Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

#### Denmark Anritsu A/S

Kirkebjerg Allé 90, DK-2605 Brøndby, Denmark Phone: +45-72112200 Fax: +45-72112210

#### Russia Anritsu EMEA Ltd. **Representation Office in Russia** Tverskava str. 16/2, bld. 1, 7th floor.

Russia, 125009, Moscow Phone: +7-495-363-1694 Fax: +7-495-935-8962

#### United Arab Emirates Anritsu EMEA Ltd. **Dubai Liaison Office**

P O Box 500413 - Dubai Internet City Al Thuraya Building, Tower 1, Suit 701, 7th Floor Dubai, United Arab Emirates Phone: +971-4-3670352 Fax: +971-4-3688460

#### Singapore

Anritsu Pte. Ltd. 60 Alexandra Terrace, #02-08, The Comtech (Lobby A) Singapore 118502 Phone: +65-6282-2400 Fax: +65-6282-2533

#### Specifications are subject to change without notice.

India

#### Anritsu Pte. Ltd. India Branch Office 3rd Floor, Shri Lakshminarayan Niwas, #2726, 80 ft Road, HAL 3rd Stage, Bangalore - 560 075, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

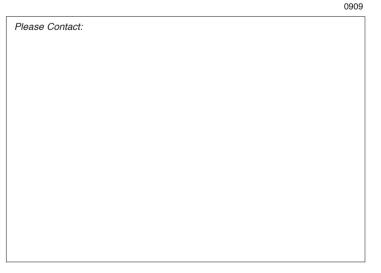
• P.R. China (Hong Kong)

Anritsu Company Ltd. Units 4 & 5, 28th Floor, Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong Phone: +852-2301-4980 Fax: +852-2301-3545

#### • P.R. China (Beijing) Anritsu Company Ltd.

**Beijing Representative Office** Room 2008, Beijing Fortune Building, No. 5, Dong-San-Huan Bei Road, Chao-Yang District, Beijing 100004, P.R. China Phone: +86-10-6590-9230 Fax: +86-10-6590-9235

Korea


### Anritsu Corporation, Ltd. 8F Hyunjuk Building, 832-41, Yeoksam Dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604

Australia

Anritsu Pty. Ltd. Unit 21/270 Ferntree Gully Road, Notting Hill, Victoria 3168, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

#### Taiwan

Anritsu Company Inc. 7F, No. 316, Sec. 1, Neihu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

